Skip to main content

A Guide and Mini-Review on the Performance Evaluation Metrics in Binary Segmentation of Magnetic Resonance Images

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13920))

  • 563 Accesses

Abstract

Eight previously proposed segmentation evaluation metrics for brain magnetic resonance images (MRI), which are sensitivity (SE), specificity (SP), false-positive rate (FPR), false-negative rate (FNR), positive predicted value (PPV), accuracy (ACC), Jaccard index (JAC) and dice score (DSC) are presented and discussed in this paper. These evaluation metrics could be classified into two groups namely pixel-wise metrics and area-wise metrics. We, also, distill the most prominent previously published papers on brain MRI segmentation evaluation metrics between 2021 and 2023 in a detailed literature matrix. The identification of illness or tumor areas using brain MRI image segmentation is a large area of research. However, there is no single segmentation evaluation metric when evaluating the results of brain MRI segmentation in the current literature. Also, the pixel-wise metrics should be supported with the area-wise metrics such as DSC while evaluating the image segmentation results and each metric should be compared with other metrics for better evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpar, O.: A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging. Expert Syst. Appl. 216, 119462 (2023). https://doi.org/10.1016/j.eswa.2022.119462

    Article  Google Scholar 

  2. Sangui, S., Iqbal, T., Chandra, P.C., Ghosh, S.K., Ghosh, A.: 3D MRI segmentation using U-Net architecture for the detection of brain tumor. Procedia Comput. Sci. 218, 542–553 (2023). https://doi.org/10.1016/j.procs.2023.01.036

    Article  Google Scholar 

  3. Altun Güven, S., Talu, M.F.: Brain MRI high-resolution image creation and segmentation with the new GAN method. Biomed. Signal Process. Control 80, 104246 (2023). https://doi.org/10.1016/j.bspc.2022.104246

    Article  Google Scholar 

  4. Gab Allah, A.M., Sarhan, A.M., Elshennawy, N.M.: Edge U-Net: brain tumor segmentation using MRI based on deep U-Net model with boundary information. Expert Syst. Appl. 213, 118833 (2023). https://doi.org/10.1016/j.eswa.2022.118833

    Article  Google Scholar 

  5. Cao, Y., Zhou, W., Zang, M., An, D., Feng, Y., Yu, B.: MBANet: a 3D convolutional neural network with multi-branch attention for brain tumor segmentation from MRI images. Biomed. Signal Process. Control 80, 104296 (2023). https://doi.org/10.1016/j.bspc.2022.104296

    Article  Google Scholar 

  6. Zhu, Z., He, X., Qi, G., Li, Y., Cong, B., Liu, Y.: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Inf. Fusion 91, 376–387 (2023). https://doi.org/10.1016/j.inffus.2022.10.022

    Article  Google Scholar 

  7. Santosh Kumar, P., Sakthivel, V.P., Raju, M., Sathya, P.D.: Brain tumor segmentation of the FLAIR MRI images using novel ResUnet. Biomed. Signal Process. Control 82, 104586 (2023). https://doi.org/10.1016/j.bspc.2023.104586

    Article  Google Scholar 

  8. Kumar, P., Agrawal, R.K., Kumar, D.: Fast and robust spatial fuzzy bounded k-plane clustering method for human brain MRI image segmentation. Appl. Soft Comput. 133, 109939 (2023). https://doi.org/10.1016/j.asoc.2022.109939

    Article  Google Scholar 

  9. Li, Z., et al.: CAN: context-assisted full attention network for brain tissue segmentation. Med. Image Anal. 85, 102710 (2023). https://doi.org/10.1016/j.media.2022.102710

    Article  PubMed  Google Scholar 

  10. Alpar, O., Dolezal, R., Ryska, P., Krejcar, O.: Low-contrast lesion segmentation in advanced MRI experiments by time-domain Ricker-type wavelets and fuzzy 2-means. Appl. Intell. 52, 15237–15258 (2022). https://doi.org/10.1007/s10489-022-03184-1

    Article  Google Scholar 

  11. Alpar, O., Dolezal, R., Ryska, P., Krejcar, O.: Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI. Pattern Recogn. 128, 108675 (2022). https://doi.org/10.1016/j.patcog.2022.108675

    Article  Google Scholar 

  12. Walsh, J., Othmani, A., Jain, M., Dev, S.: Using U-Net network for efficient brain tumor segmentation in MRI images. Healthc. Analyt. 2, 100098 (2022). https://doi.org/10.1016/j.health.2022.100098

    Article  Google Scholar 

  13. Wang, Y., Ji, Y., Xiao, H.: A data augmentation method for fully automatic brain tumor segmentation. Comput. Biol. Med. 149, 106039 (2022). https://doi.org/10.1016/j.compbiomed.2022.106039

    Article  PubMed  Google Scholar 

  14. Zhao, J., et al.: Automatic macaque brain segmentation based on 7T MRI. Magn. Reson. Imaging 92, 232–242 (2022). https://doi.org/10.1016/j.mri.2022.07.001

    Article  PubMed  Google Scholar 

  15. Alpar, O., Krejcar, O., Dolezal, R.: Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations. Appl. Soft Comput. 108, 107481 (2021). https://doi.org/10.1016/j.asoc.2021.107481

    Article  Google Scholar 

  16. Zhang, Z., Li, J., Tian, C., Zhong, Z., Jiao, Z., Gao, X.: Quality-driven deep active learning method for 3D brain MRI segmentation. Neurocomputing 446, 106–117 (2021). https://doi.org/10.1016/j.neucom.2021.03.050

    Article  Google Scholar 

  17. Weiss, D.A., et al.: Automated multiclass tissue segmentation of clinical brain MRIs with lesions. Neuroimage Clin. 31, 102769 (2021). https://doi.org/10.1016/j.nicl.2021.102769

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, F., et al.: Deep learning based segmentation of brain tissue from diffusion MRI. Neuroimage 233, 117934 (2021). https://doi.org/10.1016/j.neuroimage.2021.117934

    Article  PubMed  Google Scholar 

  19. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., Mozaffari, S.: A level set method based on domain transformation and bias correction for MRI brain tumor segmentation. J. Neurosci. Methods 352, 109091 (2021). https://doi.org/10.1016/j.jneumeth.2021.109091

    Article  PubMed  Google Scholar 

  20. Aghalari, M., Aghagolzadeh, A., Ezoji, M.: Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomed. Signal Process. Control 69, 102841 (2021). https://doi.org/10.1016/j.bspc.2021.102841

    Article  Google Scholar 

Download references

Acknowledgments

The work and the contribution were also supported by the SPEV project, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (ID: 2102–2023), “Smart Solutions in Ubiquitous Computing Environments”. We are also grateful for the support of student Michal Dobrovolny in consultations regarding application aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirimtat, A., Krejcar, O. (2023). A Guide and Mini-Review on the Performance Evaluation Metrics in Binary Segmentation of Magnetic Resonance Images. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34960-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34959-1

  • Online ISBN: 978-3-031-34960-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics