Abstract
In the present study, a fast and adaptive technique for the presentation of stimuli based on ongoing brain rhythm is described. Sensorimotor cortical mu rhythm (divided by two components: alpha (mu) and beta) was used as target for assessment of prestimulus rhythm’s power influence on the consequent reaction time. The final sample consisted of 15 participants who was instructed to response immediately after change of stimuli color. As a result of the method application, a longer reaction time in the case of highly synchronized beta oscillations compared to desynchronization was achieved in the simple reaction time task. It indicates, firstly, a crucial role of baseline, prestimulus beta in motor action initiation and, secondly, the possibility to change reaction using adaptive processing and timing of presentation in real-time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aleksandrov, A., Tugin, S.: Changes in the mu rhythm in different types of motor activity and on observation of movements. Neurosci. Behav. Physiol. 42, 302–307 (2012). https://doi.org/10.1007/s11055-012-9566-2
Andermann, M.L., et al.: Brain state-triggered stimulus delivery: an efficient tool for probing ongoing brain activity. Open J. Neurosci. 2, 5 (2012)
Belinskaya, A., Smetanin, N., Lebedev, M.A., Ossadtchi, A.: Short-delay neurofeedback facilitates training of the parietal alpha rhythm. J. Neural Eng. 17, 066012 (2020). https://doi.org/10.1088/1741-2552/abc8d7
Boncompte, G., Villena-González, M., Cosmelli, D., López, V.: Spontaneous alpha power lateralization predicts detection performance in an un-cued signal detection task. PLoS ONE 11(8), e0160347 (2016)
Ewing, K.C., Fairclough, S.H., Gilleade, K.: Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Front. Hum. Neurosci. 10, 223 (2016)
Fairclough, S.H.: Fundamentals of physiological computing. Interact. Comput. 21, 133–145 (2009)
Fox, N.A., et al.: Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol. Bull. 142(3), 291–313 (2016)
Garakh, Z., Novototsky-Vlasov, V., Larionova, E., Zaytseva, Y.: Mu rhythm separation from the mix with alpha rhythm: principal component analyses and factor topography. J. Neurosci. Methods 346, 108892 (2020)
Gastaut, H.J., Bert, J.: EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 6(3), 433–444 (1954)
Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013)
Hari, R.: Action-perception connection and the cortical mu rhythm. Prog. Brain Res. 159, 253–260 (2006)
Iemi, L., Chaumon, M., Crouzet, S.M., Busch, N.A.: Spontaneous neural oscillations bias perception by modulating baseline excitability. J. Neurosci. Offi. J. Soc. Neurosci. 37(4), 807–819 (2017)
Iemi, L., et al.: Multiple mechanisms link prestimulus neural oscillations to sensory responses. elife 8, e43620 (2019)
Jensen, O., et al.: Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience. Front. Psychol. 2, 100 (2011)
Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29(2–3), 169–195 (1999)
Llanos, C., Rodriguez, M., Rodriguez-Sabate, C., Morales, I., Sabate, M.: Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia 51(6), 1019–1026 (2013)
Luck, S.J.: An Introduction to the Event-Related Potential Technique. MIT Press, Cambridge (2005)
Mathewson, K.E., Gratton, G., Fabiani, M., Beck, D.M., Ro, T.: To see or not to see: prestimulus alpha phase predicts visual awareness. J. Neurosci. Off. J. Soc. Neurosci. 29(9), 2725–2732 (2009)
Mühl, C., Heylen, D., Nijholt, A.: Affective Brain-Computer Interfaces: Neuroscientific Approaches to Affect Detection. Oxford University Press, Oxford (2015)
Pineda, J.A.: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing.” Brain Res. Brain Res. Rev. 50(1), 57–68 (2005)
Rutishauser, U., Kotowicz, A., Laurent, G.: A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals. J. Neurosci. Methods 215(1), 139–155 (2013)
Sherman, M.A., et al.: Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice. Proc. Natl. Acad. Sci. U.S.A. 113(33), E4885–E4894 (2016)
Shin, H., Law, R., Tsutsui, S., Moore, C.I., Jones, S.R.: The rate of transient beta frequency events predicts behavior across tasks and species. eLife 6, e29086 (2017)
Smetanin, N., Belinskaya, A., Lebedev, M., Ossadtchi, A.: Digital filters for low-latency quantification of brain rhythms in real time. J. Neural Eng. 17(4), 046022 (2020)
Smetanin, N., Volkova, K., Zabodaev, S., Lebedev, M.A., Ossadtchi, A.: NFBLab-A versatile software for neurofeedback and brain-computer interface research. Front. Neuroinform. 12, 100 (2018)
Stegeman, D., Hermens, H.: Standards for surface electromyography: the european project surface EMG for non-invasive assessment of muscles (SENIAM). Roessingh Res. Dev. Enschede, The Netherlands 10, 8–12 (2007)
Yoo, J.J., et al.: When the brain is prepared to learn: enhancing human learning using real-time fMRI. Neuroimage 59(1), 846–852 (2012)
Zhang, L., Zhang, J., Yao, L.: Correlation analysis between momentary phases of ongoing EEG oscillations and ERP amplitudes to identify the optimal brain state for stimulus presentation. In: ICME International Conference on Complex Medical Engineering (CME), pp. 101–106 (2012)
Funding
This work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aksiotis, V., Tumyalis, A., Ossadtchi, A. (2023). Brain State-Triggered Stimulus Delivery Helps to Optimize Reaction Time. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2023. Lecture Notes in Computer Science(), vol 14019. Springer, Cham. https://doi.org/10.1007/978-3-031-35017-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-35017-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35016-0
Online ISBN: 978-3-031-35017-7
eBook Packages: Computer ScienceComputer Science (R0)