Skip to main content

Brain State-Triggered Stimulus Delivery Helps to Optimize Reaction Time

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2023)

Abstract

In the present study, a fast and adaptive technique for the presentation of stimuli based on ongoing brain rhythm is described. Sensorimotor cortical mu rhythm (divided by two components: alpha (mu) and beta) was used as target for assessment of prestimulus rhythm’s power influence on the consequent reaction time. The final sample consisted of 15 participants who was instructed to response immediately after change of stimuli color. As a result of the method application, a longer reaction time in the case of highly synchronized beta oscillations compared to desynchronization was achieved in the simple reaction time task. It indicates, firstly, a crucial role of baseline, prestimulus beta in motor action initiation and, secondly, the possibility to change reaction using adaptive processing and timing of presentation in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrov, A., Tugin, S.: Changes in the mu rhythm in different types of motor activity and on observation of movements. Neurosci. Behav. Physiol. 42, 302–307 (2012). https://doi.org/10.1007/s11055-012-9566-2

    Article  Google Scholar 

  • Andermann, M.L., et al.: Brain state-triggered stimulus delivery: an efficient tool for probing ongoing brain activity. Open J. Neurosci. 2, 5 (2012)

    Google Scholar 

  • Belinskaya, A., Smetanin, N., Lebedev, M.A., Ossadtchi, A.: Short-delay neurofeedback facilitates training of the parietal alpha rhythm. J. Neural Eng. 17, 066012 (2020). https://doi.org/10.1088/1741-2552/abc8d7

    Article  Google Scholar 

  • Boncompte, G., Villena-González, M., Cosmelli, D., López, V.: Spontaneous alpha power lateralization predicts detection performance in an un-cued signal detection task. PLoS ONE 11(8), e0160347 (2016)

    Article  Google Scholar 

  • Ewing, K.C., Fairclough, S.H., Gilleade, K.: Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Front. Hum. Neurosci. 10, 223 (2016)

    Article  Google Scholar 

  • Fairclough, S.H.: Fundamentals of physiological computing. Interact. Comput. 21, 133–145 (2009)

    Article  Google Scholar 

  • Fox, N.A., et al.: Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol. Bull. 142(3), 291–313 (2016)

    Article  Google Scholar 

  • Garakh, Z., Novototsky-Vlasov, V., Larionova, E., Zaytseva, Y.: Mu rhythm separation from the mix with alpha rhythm: principal component analyses and factor topography. J. Neurosci. Methods 346, 108892 (2020)

    Article  Google Scholar 

  • Gastaut, H.J., Bert, J.: EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 6(3), 433–444 (1954)

    Article  Google Scholar 

  • Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013)

    Article  Google Scholar 

  • Hari, R.: Action-perception connection and the cortical mu rhythm. Prog. Brain Res. 159, 253–260 (2006)

    Article  Google Scholar 

  • Iemi, L., Chaumon, M., Crouzet, S.M., Busch, N.A.: Spontaneous neural oscillations bias perception by modulating baseline excitability. J. Neurosci. Offi. J. Soc. Neurosci. 37(4), 807–819 (2017)

    Article  Google Scholar 

  • Iemi, L., et al.: Multiple mechanisms link prestimulus neural oscillations to sensory responses. elife 8, e43620 (2019)

    Article  Google Scholar 

  • Jensen, O., et al.: Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience. Front. Psychol. 2, 100 (2011)

    Article  Google Scholar 

  • Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29(2–3), 169–195 (1999)

    Article  Google Scholar 

  • Llanos, C., Rodriguez, M., Rodriguez-Sabate, C., Morales, I., Sabate, M.: Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia 51(6), 1019–1026 (2013)

    Article  Google Scholar 

  • Luck, S.J.: An Introduction to the Event-Related Potential Technique. MIT Press, Cambridge (2005)

    Google Scholar 

  • Mathewson, K.E., Gratton, G., Fabiani, M., Beck, D.M., Ro, T.: To see or not to see: prestimulus alpha phase predicts visual awareness. J. Neurosci. Off. J. Soc. Neurosci. 29(9), 2725–2732 (2009)

    Article  Google Scholar 

  • Mühl, C., Heylen, D., Nijholt, A.: Affective Brain-Computer Interfaces: Neuroscientific Approaches to Affect Detection. Oxford University Press, Oxford (2015)

    Google Scholar 

  • Pineda, J.A.: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing.” Brain Res. Brain Res. Rev. 50(1), 57–68 (2005)

    Article  Google Scholar 

  • Rutishauser, U., Kotowicz, A., Laurent, G.: A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals. J. Neurosci. Methods 215(1), 139–155 (2013)

    Article  Google Scholar 

  • Sherman, M.A., et al.: Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice. Proc. Natl. Acad. Sci. U.S.A. 113(33), E4885–E4894 (2016)

    Article  Google Scholar 

  • Shin, H., Law, R., Tsutsui, S., Moore, C.I., Jones, S.R.: The rate of transient beta frequency events predicts behavior across tasks and species. eLife 6, e29086 (2017)

    Article  Google Scholar 

  • Smetanin, N., Belinskaya, A., Lebedev, M., Ossadtchi, A.: Digital filters for low-latency quantification of brain rhythms in real time. J. Neural Eng. 17(4), 046022 (2020)

    Article  Google Scholar 

  • Smetanin, N., Volkova, K., Zabodaev, S., Lebedev, M.A., Ossadtchi, A.: NFBLab-A versatile software for neurofeedback and brain-computer interface research. Front. Neuroinform. 12, 100 (2018)

    Article  Google Scholar 

  • Stegeman, D., Hermens, H.: Standards for surface electromyography: the european project surface EMG for non-invasive assessment of muscles (SENIAM). Roessingh Res. Dev. Enschede, The Netherlands 10, 8–12 (2007)

    Google Scholar 

  • Yoo, J.J., et al.: When the brain is prepared to learn: enhancing human learning using real-time fMRI. Neuroimage 59(1), 846–852 (2012)

    Article  Google Scholar 

  • Zhang, L., Zhang, J., Yao, L.: Correlation analysis between momentary phases of ongoing EEG oscillations and ERP amplitudes to identify the optimal brain state for stimulus presentation. In: ICME International Conference on Complex Medical Engineering (CME), pp. 101–106 (2012)

    Google Scholar 

Download references

Funding

This work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Aksiotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aksiotis, V., Tumyalis, A., Ossadtchi, A. (2023). Brain State-Triggered Stimulus Delivery Helps to Optimize Reaction Time. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2023. Lecture Notes in Computer Science(), vol 14019. Springer, Cham. https://doi.org/10.1007/978-3-031-35017-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35017-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35016-0

  • Online ISBN: 978-3-031-35017-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics