Skip to main content

How Human Spatial Ability is Affected by the Misalignment of Idiotropic and Visual Axes

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14019))

Included in the following conference series:

  • 772 Accesses

Abstract

This paper presents the results of a study investigating the impact of misaligned idiotropic and visual axes on spatial ability in a simulated microgravity environment in virtual reality. The study involved 99 participants who completed two spatial tests, the Purdue Spatial Visualization Test: Rotations and the Perspective Taking Ability test, in three different scenarios: control (axes aligned), static misalignment, and dynamic misalignment. The results showed that dynamic misalignment significantly impacted mental rotation and spatial visualization performance, but not spatial orientation ability. Additionally, the gaming experience did not moderate mental rotation outcomes but did enhance spatial orientation ability. These findings provide insight into how altered visuospatial conditions may affect human spatial cognition and can inform the development of simulation-based training tools to help people adapt to such environments more effectively. Furthermore, the study highlights the potential of using games as a learning tool to improve productivity and safety in extreme or altered work environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, X., Li, T., Turel, O., Kuang, Y., Zhao, H., He, Q.: The impact of stem education on mathematical development in children aged 5–6 years. Int. J. Educ. Res. 109, 101795 (2021)

    Article  Google Scholar 

  2. Stapleton, T., et al.: Environmental control and life support for deep space travel. In: 46th International Conference on Environmental Systems (2016)

    Google Scholar 

  3. Kanas, N.: Psychology in deep space. https://www.bps.org.uk/psychologist/psychology-deep-space

  4. Marin, F., Beluffi, C.: Computing the minimal crew for a multi-generational space travel towards Proxima Centauri b (2018)

    Google Scholar 

  5. Lohman, D.F.: Spatial ability: a review and reanalysis of the correlational literature (1979)

    Google Scholar 

  6. de Bruin Nutley, N., Bryant, D.C., MacLean, J.N., Gonzalez, C.L.: Assessing visuospatial abilities in healthy aging: a novel visuometor task (2016)

    Google Scholar 

  7. Linn, M.C., Petersen, A.C.: Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 1479–1498 (1985)

    Google Scholar 

  8. Quasha, W.H., Likert, R.: The revised Minnesota paper form board test. J. Educ. Psychol. 28(3), 197 (1937)

    Article  Google Scholar 

  9. Carroll, J.B.: Human Cognitive Abilities: A survey of Factor-Analytic Studies, no. 1. Cambridge University Press (1993)

    Google Scholar 

  10. Ekstrom, R.B., French, J.W., Harmon, H.H.: Manual for kit of factor-referenced cognitive tests (1976)

    Google Scholar 

  11. Buckley, J., Seery, N., Canty, D.: A heuristic framework of spatial ability: a review and synthesis of spatial factor literature to support its translation into STEM education. Educ. Psychol. Rev. 30(3), 947–972 (2018)

    Article  Google Scholar 

  12. Ha, O., Fang, N.: Development of interactive 3D tangible models as teaching aids to improve students’ spatial ability in STEM education. In: 2013 IEEE Frontiers in Education Conference (FIE), pp. 1302–1304. IEEE (2013)

    Google Scholar 

  13. Harle, M., Towns, M.: A review of spatial ability literature, its connection to chemistry, and implications for instruction. J. Chem. Educ. 88(3), 351–360 (2011)

    Article  Google Scholar 

  14. Khine, M.S.: Spatial cognition: key to STEM success. In: Khine, M. (ed.) Visual-Spatial Ability in STEM Education: Springer, pp. 3–8. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44385-0_1

    Chapter  Google Scholar 

  15. Li, X., Wang, W.: Exploring spatial cognitive process among STEM Students and its role in STEM education. Sci. Educ. 30(1), 121–145 (2021)

    Article  Google Scholar 

  16. Tracy, D.M.: Toys, spatial ability, and science and mathematics achievement: Are they related? Sex Roles 17(3), 115–138 (1987)

    Article  Google Scholar 

  17. Casey, M.B., Nuttall, R., Pezaris, E., Benbow, C.P.: The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Dev. Psychol. 31(4), 697 (1995)

    Article  Google Scholar 

  18. Dowker, A.: How important is spatial ability to mathematics? Behav. Brain Sci. 19(2), 251 (1996)

    Article  Google Scholar 

  19. Fennema, E.: Mathematics, Spatial Ability and the Sexes (1974)

    Google Scholar 

  20. Kyttälä, M., Björn, P.M.: The role of literacy skills in adolescents’ mathematics word problem performance: controlling for visuo-spatial ability and mathematics anxiety. Learn. Individ. Differ. 29, 59–66 (2014)

    Article  Google Scholar 

  21. Xie, F., Zhang, L., Chen, X., Xin, Z.: Is spatial ability related to mathematical ability: a meta-analysis. Educ. Psychol. Rev. 32(1), 113–155 (2020)

    Article  Google Scholar 

  22. Annett, M.: Spatial ability in subgroups of left-and right-handers. Br. J. Psychol. 83(4), 493–515 (1992)

    Article  Google Scholar 

  23. Heo, M., Toomey, N.: Learning with multimedia: the effects of gender, type of multimedia learning resources, and spatial ability. Comput. Educ. 146, 103747 (2020)

    Article  Google Scholar 

  24. Höffler, T.N.: Spatial ability: Its influence on learning with visualizations—a meta-analytic review. Educ. Psychol. Rev. 22(3), 245–269 (2010)

    Article  Google Scholar 

  25. Hegarty, M., Keehner, M., Cohen, C., Montello, D.R., Lippa, Y.: The role of spatial cognition in medicine: applications for selecting and training professionals. In: Applied Spatial Cognition, pp. 285–316. Psychology Press (2020)

    Google Scholar 

  26. Hier, D.B., Crowley, W.F., Jr.: Spatial ability in androgen-deficient men. N. Engl. J. Med. 306(20), 1202–1205 (1982)

    Article  Google Scholar 

  27. Jain, D., et al.: Immersive terrestrial scuba diving using virtual reality. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1563–1569 (2016)

    Google Scholar 

  28. Meirhaeghe, N., Bayet, V., Paubel, P.-V., Mélan, C.: Selective facilitation of egocentric mental transformations under short-term microgravity. Acta Astronaut. 170, 375–385 (2020)

    Article  Google Scholar 

  29. Miiro, S.: The issues and complexities surrounding the future of long duration spaceflight (2017)

    Google Scholar 

  30. Oman, C.: Spatial orientation and navigation in microgravity. In: Mast, F., Jäncke, L. (eds.) Spatial Processing in Navigation, Imagery and Perception, pp. 209–247. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-71978-8_13

    Chapter  Google Scholar 

  31. Park, H., Dixit, M., Faghihi, N., McNamara, A., Vaid, J.: Understanding spatial abilities and spatial strategy under extreme visual and gravitational environments. In: 17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments (2021)

    Google Scholar 

  32. Alberty, M.: How to train your astronauts. https://www.nasa.gov/mission_pages/station/research/news/astronaut_trainingaccessed

  33. Jenkin, M., Zacher, J., Dyde, R., Harris, L., Jenkin, H.: Perceptual upright: the relative effectiveness of dynamic and static images under different gravity states (2011)

    Google Scholar 

  34. Gholami, S., et al.: Hybrid microwave sintering of a lunar soil simulant: effects of processing parameters on microstructure characteristics and mechanical properties. Mater. Des. 220, 110878 (2022)

    Article  Google Scholar 

  35. Clement, G., et al.: Long-duration spaceflight increases depth ambiguity of reversible perspective figures. PLoS One 10(7), e0132317 (2015)

    Article  Google Scholar 

  36. Kincl, L., Bhattacharya, A., Succop, P., Bagchee, A.: The effect of workload, work experience and inclined standing surface on visual spatial perception: fall potential/prevention implications. Occup. Ergon. 3(4), 251–259 (2003)

    Article  Google Scholar 

  37. Garg, A., Norman, G.R., Spero, L., Maheshwari, P.: Do virtual computer models hinder anatomy learning? Acad. Med. (1999)

    Google Scholar 

  38. Lin, Y., Suh, A.: The role of spatial ability in learning with virtual reality: a literature review. In: 54th Hawaii International Conference on System Sciences (HICSS 2021), pp. 94–103 (2021)

    Google Scholar 

  39. Liao, H., Dong, W.: An exploratory study investigating gender effects on using 3D maps for spatial orientation in wayfinding. ISPRS Int. J. Geo Inf. 6(3), 60 (2017)

    Article  Google Scholar 

  40. McGee, M.G.: Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychol. Bull. 86(5), 889 (1979)

    Article  Google Scholar 

  41. Lohman, D.F.: Spatial abilities as traits, processes, and knowledge. In: Advances in the Psychology of Human Intelligence, pp. 181–248. Psychology Press (2014)

    Google Scholar 

  42. Lowrie, T., Harris, D., Logan, T., Hegarty, M.: The impact of a spatial intervention program on students’ spatial reasoning and mathematics performance. J. Exp. Educ. 89(2), 259–277 (2021)

    Article  Google Scholar 

  43. Contero, M., Naya, F., Company, P., Saorín, J.L., Conesa, J.: Improving visualization skills in engineering education. IEEE Comput. Graphics Appl. 25(5), 24–31 (2005)

    Article  Google Scholar 

  44. Fatemah, A., Rasool, S., Habib, U.: Interactive 3D visualization of chemical structure diagrams embedded in text to aid spatial learning process of students. J. Chem. Educ. 97(4), 992–1000 (2020)

    Article  Google Scholar 

  45. Katsioloudis, P.J., Jovanovic, V.: Spatial visualization ability and impact of drafting models: a quasi experimental study. Eng. Design Graphics J. 78(2) (2014)

    Google Scholar 

  46. Liao, K., Xiao, R., Gonzalez, J., Ding, L.: Decoding individual finger movements from one hand using human EEG signals. PLoS One 9(1), e85192 (2014)

    Article  Google Scholar 

  47. Maeda, Y., Yoon, S.Y.: Scaling the revised PSVT-R: characteristics of the first-year engineering students’ spatial ability. In: 2011 ASEE Annual Conference & Exposition, pp. 22.1273. 1–22.1273. 19 (2011)

    Google Scholar 

  48. Miyake, A., Friedman, N.P., Rettinger, D.A., Shah, P., Hegarty, M.: How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J. Exp. Psychol. Gen. 130(4), 621 (2001)

    Article  Google Scholar 

  49. Park, Y., Brösamle, M., Hölscher, C.: The function of gesture in architectural-design-related spatial ability. In: Šķilters, J., Newcombe, N.S., Uttal, D. (eds.) Spatial Cognition 2020. LNCS (LNAI), vol. 12162, pp. 309–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57983-8_24

    Chapter  Google Scholar 

  50. Pittalis, M., Christou, C.: Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educ. Stud. Math. 75(2), 191–212 (2010)

    Article  Google Scholar 

  51. Rahmawati, L., Wulandari, Y.: Visual-spatial ability in solving geometry problems viewed from gender using the flipped classroom model. In: International Seminar Proceeding, no. 2 (2021)

    Google Scholar 

  52. Wulandari, N., Ekowati, D., Novitasari, D., Hamdani, D., Gunawan, G.: Spatial reasoning profile of the students with good number sense ability. In: Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012077. IOP Publishing (2021)

    Google Scholar 

  53. Ernst, J.V., Williams, T.O., Clark, A.C., Kelly, D.P.: Factors of spatial visualization: an analysis of the PSVT: R. Eng. Design Graphics J. 81(1) (2017)

    Google Scholar 

  54. Maeda, Y., Yoon, S.Y.: A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: visualization of rotations (PSVT: R). Educ. Psychol. Rev. 25(1), 69–94 (2013)

    Article  Google Scholar 

  55. Samsudin, K., Rafi, A., Hanif, A.S.: Training in mental rotation and spatial visualization and its impact on orthographic drawing performance. J. Educ. Technol. Soc. 14(1), 179–186 (2011)

    Google Scholar 

  56. Lowrie, T., Logan, T., Hegarty, M.: The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. J. Cogn. Dev. 20(5), 729–751 (2019)

    Article  Google Scholar 

  57. Kozhevnikov, M., Hegarty, M.: A dissociation between object manipulation spatial ability and spatial orientation ability. Mem. Cognit. 29(5), 745–756 (2001)

    Article  Google Scholar 

  58. Fehringer, B.C.: Supplementary materials to: R-Cube-SR test: a new test for spatial relations distinguishable from visualization (2021)

    Google Scholar 

  59. Long, L.O., Gomer, J.A., Wong, J.T., Pagano, C.C.: Visual spatial abilities in uninhabited ground vehicle task performance during teleoperation and direct line of sight. Presence Teleoper. Virtual Environ. 20(5), 466–479 (2011)

    Article  Google Scholar 

  60. Schlack, A., Sterbing-D’Angelo, S.J., Hartung, K., Hoffmann, K.-P., Bremmer, F.: Multisensory space representations in the macaque ventral intraparietal area. J. Neurosci. 25(18), 4616–4625 (2005)

    Article  Google Scholar 

  61. Harris, S.E., Deary, I.J.: The genetics of cognitive ability and cognitive ageing in healthy older people. Trends Cogn. Sci. 15(9), 388–394 (2011)

    Google Scholar 

  62. Li, D., Shao, Z., Zhang, R.: Advances of geo-spatial intelligence at LIESMARS. Geo-Spat. Inf. Sci. 23(1), 40–51 (2020)

    Article  Google Scholar 

  63. Guzsvinecz, T., Orbán-Mihálykó, É., Sik-Lányi, C., Perge, E.: Investigation of spatial ability test completion times in virtual reality using a desktop display and the Gear VR. Virtual Reality 1–14 (2022)

    Google Scholar 

  64. Shebilske, W.L., Tubré, T., Tubré, A.H., Oman, C.M., Richards, J.T.: Three-dimensional spatial skill training in a simulated space station: random vs. blocked designs. Aviat. Space Environ. Med. 77(4), 404–409 (2006)

    Google Scholar 

  65. Guo, J., Jiang, G., Liu, Y., An, M.: Predicting navigation performance in a multi-module space station through spatial abilities. In: Long, S., Dhillon, B. (eds.) Man-Machine-Environment System Engineering. MMESE 2016. Lecture Notes in Electrical Engineering, vol. 406, pp. 39–46. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2323-1_5

    Chapter  Google Scholar 

  66. Schaller, S., Yucel, I., Kahn, R.: Applying game learning principles to analyze and identify improvements for scuba training simulations (2018)

    Google Scholar 

  67. Kanas, N., Manzey, D.: Space Psychology and Psychiatry. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-6770-9

    Book  Google Scholar 

  68. Mikropoulos, T.A., Natsis, A.: Educational virtual environments: a ten-year review of empirical research (1999–2009). Comput. Educ. 56(3), 769–780 (2011)

    Article  Google Scholar 

  69. Sandor, A., Moses, H., Sprufera, J., Begault, D.R.: Memo on speech alarms: Replication and validation of results (2016)

    Google Scholar 

  70. Strauss, S.: Extravehicular mobility unit training suit symptom study report (2004)

    Google Scholar 

  71. Hegarty, M., Waller, D.: A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence 32(2), 175–191 (2004)

    Article  Google Scholar 

  72. Ramful, A., Lowrie, T., Logan, T.: Measurement of spatial ability: construction and validation of the spatial reasoning instrument for middle school students. J. Psychoeduc. Assess. 35(7), 709–727 (2017)

    Article  Google Scholar 

  73. Tito, J., Basso, T., Moraes, R.: Digital measurement of spatial ability using a virtual reality environment. In: 2021 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 1103–1107. IEEE (2021)

    Google Scholar 

  74. Martin, J., Saorín, J.L., Martín, N., Contero, M.: Do video games improve spatial abilities of engineering students? Int. J. Eng. Educ. 25(6), 1194–1204 (2009)

    Google Scholar 

  75. Adams, D., Mayer, R.: Examining the connection between dynamic and static spatial skills and video game performance. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 34, no. 34 (2012)

    Google Scholar 

  76. Ogunkola, B., Knight, C.: Technical drawing course, video games, gender, and type of school on spatial ability. J. Educ. Res. 112(5), 575–589 (2019)

    Article  Google Scholar 

  77. Pepin, M., Dorval, M.: Effect of playing a video game on adults’ and adolescents’ spatial visualization. Educ. Technol. 26(10), 48–52 (1986)

    Google Scholar 

  78. Cherney, I.D., Brabec, C.M., Runco, D.V.: Mapping out spatial ability: sex differences in way-finding navigation. Percept. Mot. Skills 107(3), 747–760 (2008)

    Article  Google Scholar 

  79. Spence, I., Feng, J.: Video games and spatial cognition. Rev. Gen. Psychol. 14(2), 92–104 (2010)

    Article  Google Scholar 

  80. De Lisi, R., Wolford, J.L.: Improving children’s mental rotation accuracy with computer game playing. J. Genet. Psychol. 163(3), 272–282 (2002)

    Article  Google Scholar 

  81. Dye, M.W., Green, C.S., Bavelier, D.: The development of attention skills in action video game players. Neuropsychologia 47(8–9), 1780–1789 (2009)

    Article  Google Scholar 

  82. Jenkin, M., Zacher, J., Dyde, R., Harris, L., Jenkin, H.: Perceptual upright: the relative effectiveness of dynamic and static images under different gravity states. Seeing Perceiving 24(1), 53–64 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. National Science Foundation (NSF) through grant CNS 1928695. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily represent those of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Salehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salehi, F., Pariafsai, F., Dixit, M.K. (2023). How Human Spatial Ability is Affected by the Misalignment of Idiotropic and Visual Axes. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2023. Lecture Notes in Computer Science(), vol 14019. Springer, Cham. https://doi.org/10.1007/978-3-031-35017-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35017-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35016-0

  • Online ISBN: 978-3-031-35017-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics