Abstract
Human sensory systems are capable of encoding emotion-related signals during social interactions (e.g., fearful or happy facial expressions). In this regard, many emotion elicitation procedures have been reported within the scope of social signal processing research. Most of these procedures rely on socially relevant stimuli, such as emotional face images, videos, and, more recently, virtual reality (VR) scenes. Unfortunately, procedures involving cross-modal interactions beyond visual and acoustic stimuli, such as olfaction, are still scarce. In this sense, neuroscience supports a close link between the olfactory and affective systems. Moreover, experimental research has reported faster appraisals of emotional face images when congruent valence-laden artificial scents were presented (e.g., positive scent-happy face; negative scent-fearful face). Interestingly, recent findings indicate that emotion-related human-body odors (HBOs) might also modulate affective appraisals during a neutral virtual reality experience. However, whether and how emotion-related HBOs modulate affective VR experiences requires further examination. Here, an approach to this research question is proposed from a Virtual Reality-based Behavioral Biomarker (VRBB) experimental framework. Concretely, in the first place, a novel affective elicitation procedure based on social-emotional VR is introduced, wherein electro-dermal activity (EDA), heart-rate variability (HRV), electroencephalography (EEG), and affective appraisals, will be accounted for. In a second step, the modulating role of HBOs will be investigated regarding those measures. This work presents the envisioned model, details of the devised VEs, and a research design to test concrete hypotheses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Moskowitz, G.B.: Social Cognition: Understanding Self and Others. Guilford Press, New York (2005)
Argyle, M.: Social Interaction: Process and Products, 2 ed. Routledge, New York (2017). https://doi.org/10.4324/9781315129556
Redcay, E., Schilbach, L.: Using second-person neuroscience to elucidate the mechanisms of social interaction. Nat. Rev. Neurosci, 20(8), 495–505 (2019). https://doi.org/10.1038/s41583-019-0179-4
Vinciarelli, A., Pantic, M., Bourlard, H., Pentland, Y.A.: Social signal processing: state-of-the-art and future perspectives of an emerging domain. In: Proceedings of the 16th ACM International Conference on Multimedia, pp. 1061–1070. New York (2008). https://doi.org/10.1145/1459359.1459573
Burgoon, J.K., Magnenat-Thalmann, N., Pantic, M., Vinciarelli, Y.A.: Social Signal Processing. Cambridge University Press, Cambridge (2017)
Hamm, A.O.: Fear, anxiety, and their disorders from the perspective of psychophysiology. Psychophysiology, 57(2), e13474 (2020). https://doi.org/10.1111/psyp.13474
Scherer, K.R., Banse, R., Wallbott, Y.H.G.: Emotion inferences from vocal expression correlate across languages and cultures. J. Cross-Cult. Psychol. 32(1), 76–92 (2001). https://doi.org/10.1177/0022022101032001009
Pietro, C., Silvia, S., Giuseppe, Y.R.: The pursuit of happiness measurement: a psychometric model based on psychophysiological correlates. Sci. World J. 2014, e139128 (2014). https://doi.org/10.1155/2014/139128
Motogna, V., Lupu-Florian, G., Lupu, Y E.: Strategy for affective computing based on HRV and EDA. In: 2021 International Conference on e-Health and Bioengineering (EHB), pp. 1–4 (20210. https://doi.org/10.1109/EHB52898.2021.9657654
Debiec, J., Olsson, Y.A.: Social fear learning: from animal models to human function. Trends Cogn. Sci. 21(7), 546–555 (2017). https://doi.org/10.1016/j.tics.2017.04.010
Quoidbach, J., Taquet, M., Desseilles, M., de Montjoye, Y.A., Gross, J.J.: Happiness and social behavior. Psychol. Sci. 30(8), 1111–1122 (2019). https://doi.org/10.1177/0956797619849666
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H., Hawk, S.T., Van Knippenberg, A.D.: Presentation and validation of the radboud faces database. Cogn. Emotion 24(8), 1377–1388 (2010). https://doi.org/10.1080/02699930903485076
Di Crosta, A., et al.: The chieti affective action videos database, a resource for the study of emotions in psychology. Sci. Data 7(1), 32 (2020). https://doi.org/10.1038/s41597-020-0366-1
Li, B.J., Bailenson, J.N., Pines, A., Greenleaf, W.J., Williams, L.M.: A public database of immersive VR videos with corresponding ratings of arousal, valence, and correlations between head movements and self report measures. Front. Psychol. 8, 2116, Accedido: 17 de enero de 2023 (2017). https://www.frontiersin.org/articles/10.3389/fpsyg.2017.02116
Semin, G.R., de Groot, Y J.H.B.: The chemical bases of human sociality. Trends Cogn. Sci. 17(9), 427–429 (2013). https://doi.org/10.1016/j.tics.2013.05.008
de Groot, J.H., Semin, G.R., Smeets, M.A.: On the communicative function of body odors: a theoretical integration and review. Perspect. Psychol. Sci. 12(2), 306–324 (2017). https://doi.org/10.1177/1745691616676599
Hackländer, R.P.M., Janssen, S.M.J., Bermeitinger, C.: An in-depth review of the methods, findings, and theories associated with odor-evoked autobiographical memory. Psychon. Bull. Rev. 26(2), 401–429 (2018). https://doi.org/10.3758/s13423-018-1545-3
Leppänen, J.M., Hietanen, Y.J.K.: Affect and face perception: odors modulate the recognition advantage of happy faces. Emotion 3(4), 315–326 (2003). https://doi.org/10.1037/1528-3542.3.4.315
D’Aniello, B., Semin, G.R., Alterisio, A., Aria, M., Scandurra, A.: Interspecies transmission of emotional information via chemosignals: from humans to dogs (Canis lupus familiaris). Anim. Cogn. 21(1), 67–78 (2017). https://doi.org/10.1007/s10071-017-1139-x
Kamiloğlu, R.G., Smeets, M.A.M., de Groot, J.H.B., Semin, Y G.R.: Fear odor facilitates the detection of fear expressions over other negative expressions. Chem. Senses, 43(6), 419–426 (2018). https://doi.org/10.1093/chemse/bjy029
Callara, A.L., et al.: Human body odors of happiness and fear modulate the late positive potential component during neutral face processing: a preliminary ERP study on healthy subjects. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4093–4096 (2022). https://doi.org/10.1109/EMBC48229.2022.9871495
Parsons, T.D., Gaggioli, A., Riva, Y.G.: Virtual reality for research in social neuroscience. Brain Sci. 7(4), 42 (2017). https://doi.org/10.3390/brainsci7040042
Diniz Bernardo, P., Bains, A., Westwood, S., Mograbi, D.C.: Mood induction using virtual reality: a systematic review of recent findings. J. Technol. Behav. Sci. 6(1), 3–24 (2020). https://doi.org/10.1007/s41347-020-00152-9
Flavián, C., Ibáñez-Sánchez, S., Orús, Y.C.: The influence of scent on virtual reality experiences: the role of aroma-content congruence. J. Bus. Res. 123, 289–301 (2021). https://doi.org/10.1016/j.jbusres.2020.09.036
Baus, O., Bouchard, S.: Exposure to an unpleasant odour increases the sense of Presence in virtual reality. Virtual Reality 21(2), 59–74 (2016). https://doi.org/10.1007/s10055-016-0299-3
Liu, R., Hannum, M., Simons, Y.C.T.: Using immersive technologies to explore the effects of congruent and incongruent contextual cues on context recall, product evaluation time, and preference and liking during consumer hedonic testing. Food Res. Int. 117, 19–29 (2019). https://doi.org/10.1016/j.foodres.2018.04.024
Quintana, P., Nolet, K., Baus, O., Bouchard, Y.S.: The effect of exposure to fear-related body odorants on anxiety and interpersonal trust toward a virtual character. Chem. Senses 44(9), 683–692 (2019). https://doi.org/10.1093/chemse/bjz063
Alcañiz Raya, M., et al.: Application of supervised machine learning for behavioral biomarkers of autism spectrum disorder based on electrodermal activity and virtual reality. Front. Hum. Neurosci. 14, 90 (2022). https://www.frontiersin.org/article/10.3389/fnhum.2020.00090
Baños, R.M., Liaño, V., Botella, C., Alcañiz, M., Guerrero, B., Rey, B.: Changing induced moods via virtual reality. In: IJsselsteijn, W.A., de Kort, Y.A.W., Midden, C., Eggen, B., van den Hoven, E. (eds.) PERSUASIVE 2006. LNCS, vol. 3962, pp. 7–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11755494_3
Wolfensberger, M.: Sniffin’Sticks: a New Olfactory Test Battery», Acta Oto-Laryngologica, vol. 120, n.o 2, pp. 303–306, ene. 2000, doi: https://doi.org/10.1080/000164800750001134
Caballo, V.E., Salazar, I.C., Arias, V., Hofmann, S.G., Curtiss, Y J.: Psychometric properties of the Liebowitz Social Anxiety Scale in a large cross-cultural Spanish and Portuguese speaking sample. Braz. J. Psychiatry, 41, 122–130 (2018). https://doi.org/10.1590/1516-4446-2018-0006
Magán, I., Sanz, J., García-Vera, Y.M.P.: Psychometric properties of a spanish version of the beck anxiety inventory (BAI) in general population. Span. J. Psychol. 11(2), 626–640 (2008). https://doi.org/10.1017/S1138741600004637
Catterall, W.A.: Regulation of Cardiac Calcium Channels in the Fight-or-Flight Response. Current Mol. Pharmacol. 8(1), 12–21 (2015)
Acknowledgment
This project is funded by the European Union (EU) Horizon 2020 Project “POTION-Promoting Social Interaction through Emotional Body odors” (Grant Number: 824153).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cervera-Torres, S. et al. (2023). Modulating Virtual Affective Elicitation by Human Body Odors: Advancing Research on Social Signal Processing in Virtual Reality. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2023. Lecture Notes in Computer Science(), vol 14019. Springer, Cham. https://doi.org/10.1007/978-3-031-35017-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-35017-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35016-0
Online ISBN: 978-3-031-35017-7
eBook Packages: Computer ScienceComputer Science (R0)