Skip to main content

Integration of Fault-Tolerant Design and Fault-Tolerant Control of Automated Guided Vehicles

  • Conference paper
  • First Online:
Advanced, Contemporary Control (PCC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 708))

Included in the following conference series:

  • 130 Accesses

Abstract

Both fault-tolerant design (FTD) and fault-tolerant control (FTC) are receiving increasing attention from the scientific community. Both intend to develop and implement solutions for accommodating faults which are inevitable in complex technical systems. However, up to no, little scientific activity was aimed at integrating those two promising approaches. This paper describes a detailed investigation of common aspects and interfaces between FTD and FTC as well as a sensible combined process. This investigation was based on the development of automated guided vehicles (AGVs) together with the appropriate control and diagnosis algorithms and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alyoussef, F., Akrad, A., Sehab, R., Morel, C., Kaya, I.: Velocity sensor fault-tolerant controller for induction machine using intelligent voting algorithm. Energies 15(9), 3084 (2022)

    Article  Google Scholar 

  2. Berx, N., Decré, W., Morag, I., Chemweno, P., Pintelon, L.: Identification and classification of risk factors for human-robot collaboration from a system-wide perspective. Comput. Ind. Eng. 163, 107827 (2022)

    Article  Google Scholar 

  3. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer-Verlag, New York (2016)

    Google Scholar 

  4. Dubrova, E.: Fault-Tolerant Design. Springer-Verlag, New York (2013)

    Book  MATH  Google Scholar 

  5. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6., vollständig überarbeitete und erweiterte Auflage. München Wien, (2017)

    Google Scholar 

  6. Elwert, M., Ramsaier, M., Eisenbart, B., Stetter, R., Till, M., Rudolph, S.: Digital function modeling in graph-based design languages. Appl. Sci. 12(11) (2022)

    Google Scholar 

  7. Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Herb, R., Herb, T.: and Veit Kohnhauser. Triz. Der systematische Weg zur Innovation, Landsberg (2000)

    Google Scholar 

  9. Hua, L., Zhang, J., Li, D., Xi, X., Asif Shah, M.: Sensor fault diagnosis and fault tolerant control of quadrotor UAV based on genetic algorithm. J. Sens. (2022)

    Google Scholar 

  10. Khoury, B., Nejjari, F., Puig, V.: Reliability-aware zonotopic tube-based model predictive control of a drinking water network. Int. J. Appl. Math. Comput. Sci. 32(2), 197–211 (2022)

    MATH  Google Scholar 

  11. Kościelny, J.M., Bartyś, M., Syfert, M., Sztyber, A.: A graph theory–based approach to the description of the process and the diagnostic system. Int. J. Appl. Math. Comput. Sci., 32(2), 213–227 (2022)

    Google Scholar 

  12. Majdzik, P., Witczak, M., Lipiec, B., Banaszak, Z.: Integrated fault-tolerant control of assembly and automated guided vehicle-based transportation layers. Int. J. Comput. Integr. Manuf. 35(4–5), 409–426 (2022)

    Article  Google Scholar 

  13. Mrugalska, B., Stetter, R.: Health-aware model-predictive control of a cooperative agv-based production system. Sensors 19(3), (2019)

    Google Scholar 

  14. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: a systematic Approach. Springer-Verlag, (2007)

    Google Scholar 

  15. Rotondo, D., Ponsart, J.-C., Fatiha Nejjari, Theilliol, D., Puig, V.: Virtual actuator-based FTC for LPV systems with saturating actuators and FDI delays. In: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), pp. 831–837. IEEE (2016)

    Google Scholar 

  16. Rotondo, D., Ponsart, J.-C., Theilliol, D., Nejjari, F., Puig, V.: A virtual actuator approach for the fault tolerant control of unstable linear systems subject to actuator saturation and fault isolation delay. Annual Rev. Control 39, 68–80 (2015)

    Article  Google Scholar 

  17. Rotondo, D., Puig, V., Nejjari, F.: A virtual actuator approach for fault tolerant control of switching LPV systems. IFAC Proc. Vol. 47(3), 11667–11672 (2014)

    Article  Google Scholar 

  18. Seron, M., De Doná, j., Richter, J.H.: Bank of virtual actuators for fault tolerant control. IFAC Proc. Vol. 44(1), 5436–5441 (2011)

    Google Scholar 

  19. Srinivasarengan, K., Ragot, J., Aubrun, C., Maquin, D.: Parameter identifiability for nonlinear LPV models. Int. J. Appl. Math. Comput. Sci. 32(2), 255–269 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Stetter, R.: Fault-Tolerant Design and Control of Automated Vehicles and Processes. SSDC, vol. 201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12846-3

    Book  MATH  Google Scholar 

  21. Stetter, R.: A virtual fuzzy actuator for the fault-tolerant control of a rescue vehicle. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK (2020)

    Google Scholar 

  22. Stetter, R.: Algorithms and methods for the fault-tolerant design of an automated guided vehicle. Sensors 22(12) (2022)

    Google Scholar 

  23. Stetter, R., Göser, R., Gresser, S., Till, M., Witczak, M.: Fault-tolerant design for increasing the reliability of an autonomous driving gear shifting system. Eksploatacja i Niezawodność, 22(3) (2020)

    Google Scholar 

  24. Stetter, R., Witczak, M., Pazera, N.: Virtual diagnostic sensors design for an automated guided vehicle. Appl. Sci. 8(5) (2018)

    Google Scholar 

  25. Wang, R.C., Edgar, T.F., Baldea, M., Nixon, M., Wojsznis, W., Dunia, R.: Process fault detection using time-explicit kiviat diagrams. AIChE J. 61(12), 4277–4293 (2015)

    Article  Google Scholar 

  26. Witczak, M.: Fault diagnosis and fault-tolerant control strategies for non-linear systems. In: Lecture Notes in Electrical Engineering, Vol. 266. Springer International Publishing, Heidelberg, Germany (2014). https://doi.org/10.1007/978-3-319-03014-2

  27. Zhang, K., Li, H., Cao, S., Yang, C., Sun, F., Wang, Z.: Motor current signal analysis using hypergraph neural networks for fault diagnosis of electromechanical system. Measurement 201, 111697 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

A part of the work was supported by the National Science Centre of Poland under Grant: UMO-2017/27/B/ST7/00620. A part of the research work was carried out in the scope of the project “Automatisierter Entwurf eines geometrischen und kinetischen digitalen Zwillings einer Rohbaufertigungsanlage für die Virtuelle Inbetriebnahme (TWIN)”, which is funded by the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stetter, R., Witczak, M. (2023). Integration of Fault-Tolerant Design and Fault-Tolerant Control of Automated Guided Vehicles. In: Pawelczyk, M., Bismor, D., Ogonowski, S., Kacprzyk, J. (eds) Advanced, Contemporary Control. PCC 2023. Lecture Notes in Networks and Systems, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-031-35170-9_26

Download citation

Publish with us

Policies and ethics