Skip to main content

Prolog Meets Biology

  • Chapter
  • First Online:
Prolog: The Next 50 Years

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13900))

Abstract

This paper provides an overview of the use of Prolog and its derivatives to sustain research and development in the fields of bioinformatics and computational biology. A number of applications in this domain have been enabled by the declarative nature of Prolog and the combinatorial nature of the underlying problems. The paper provides a summary of some relevant applications as well as potential directions that the Prolog community can continue to pursue in this important domain. The presentation is organized in two parts: “small,” which explores studies in biological components and systems, and “large,” that discusses the use of Prolog to handle biomedical knowledge and data. A concrete encoding example is presented and the effective implementation in Prolog of a widely used approximated search technique, large neighborhood search, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelopoulos, N., Giamas, G.: Prolog Bioinformatic Pipelines: A Case Study in Gene Dysregulation. In: Workshop on Constraint-Based Methods in Bioinformatics (WCB14). Lyon, France (2014)

    Google Scholar 

  2. Baek, M., Baker, D.: Deep learning and protein structure modeling. Nat. Methods 19, 13–14 (2022)

    Article  Google Scholar 

  3. Bansal, A.K.: Establishing a framework for comparative analysis of genome sequences. In: Proceedings of the International IEEE Symposium on Intelligence in Neural and Biological Systems, pp. 84–91 (1995)

    Google Scholar 

  4. Bansal, A.K., Bork, P.: Applying logic programming to derive novel functional information of genomes. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 275–289. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49201-1_19

    Chapter  Google Scholar 

  5. Barton, G.J., Rawlings, C.J.: A Prolog approach to analysing protein structure. Tetrahedron Comput. Methodol. 3(6 PART C), 739–756 (1990)

    Google Scholar 

  6. Bodei, C., Bracciali, A., Chiarugi, D.: On deducing causality in metabolic networks. BMC Bioinform. 9(S-4) (2008)

    Google Scholar 

  7. Burger, A., Davidson, D., Baldock, R.: Formalization of mouse embryo anatomy. Bioinformatics 20, 259–267 (2004)

    Article  Google Scholar 

  8. Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  Google Scholar 

  9. Campeotto, F., Dal Palù, A., Dovier, A., Fioretto, F., Pontelli, E.: A constraint solver for flexible protein model. J. Artif. Intell. Res. (JAIR) 48, 953–1000 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chisham, B., Pontelli, E., Son, T., Wright, B.: CDAOStore: a phylogenetic repository using logic programming and web services. In: International Conference on Logic Programming, pp. 209–219 (2011)

    Google Scholar 

  11. Chisham, B., Wright, B., Le, T., Son, T., Pontelli, E.: CDAO-Store: Ontology-driven Data Integration for Phylogenetic Analysis. BMC Bioinform. 12, 98 (2011)

    Article  Google Scholar 

  12. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: Inference with constrained hidden markov models in PRISM. Theory Pract. Logic Program. 10(4–6), 449–464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cooper, G., Friedman, J.M.: Interpreting chromosomal abnormalities using Prolog. Comput. Biomed. Res. 23(2), 153–164 (1990)

    Article  Google Scholar 

  14. Crescenzi, P., Goldman, D., Papadimitrou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. In: Proceedings of STOC, pp. 597–603 (1998)

    Google Scholar 

  15. Dal Palù, A., Dovier, A., Fogolari, F.: Constraint logic programming approach to protein structure prediction. BMC Bioinform. 5, 186 (2004)

    Article  MATH  Google Scholar 

  16. Dal Palù, A., Dovier, A., Fogolari, F., Pontelli, E.: CLP-based protein fragment assembly. Theory Pract. Logic Program. 10(4–6), 709–724 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E.: Exploring life: answer set programming in bioinformatics. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory, Systems, and Applications, pp. 359–412. ACM / Morgan & Claypool (2018)

    Google Scholar 

  18. De Maeyer, D., Renkens, J., Cloots, L., De Raedt, L., Marchal, K.: PheNetic: network-based interpretation of unstructured gene lists in E. coli. Mol. BioSyst. 9, 1594–1603 (2013)

    Article  Google Scholar 

  19. Degrand, É., Fages, F., Soliman, S.: Graphical conditions for rate independence in chemical reaction networks. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 61–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_4

    Chapter  MATH  Google Scholar 

  20. Dong, S., Searls, D.B.: Gene structure prediction by linguistic methods. Genomics 23(3), 540–551 (1994)

    Article  Google Scholar 

  21. Dovier, A., Formisano, A., Gupta, G., Hermenegildo, M.V., Pontelli, E., Rocha, R.: Parallel logic programming: a sequel. Theory Pract. Log. Program. 22(6), 905–973 (2022)

    Article  MathSciNet  Google Scholar 

  22. Erdem, E.: Applications of answer set programming in phylogenetic systematics. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 415–431. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20832-4_26

    Chapter  Google Scholar 

  23. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)

    Google Scholar 

  24. EvoInfo Working Group: PhyloWS: Phyloinformatics Web Services API. https://evoinfo.nescent.org/PhyloWS (2009)

  25. Fanchon, E., Corblin, F., Trilling, L., Hermant, B., Gulino, D.: Modeling the molecular network controlling adhesion between human endothelial cells: inference and simulation using constraint logic programming. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS, vol. 3082, pp. 104–118. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-25974-9_9

    Chapter  Google Scholar 

  26. Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gaasterland, T., Sensen, C.W.: Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. Biochimie 78(5), 302–310 (1996)

    Article  Google Scholar 

  28. Gaasterland, T., Selkov, E.: Reconstruction of metabolic networks using incomplete information. In: Rawlings, C.J., Clark, D.A., Altman, R.B., Hunter, L., Lengauer, T., Wodak, S.J. (eds.) Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology, Cambridge, United Kingdom, 16–19 July 1995, pp. 127–135. AAAI (1995)

    Google Scholar 

  29. Gonçalves, A., Ong, I.M., Lewis, J.A., Santos Costa, V.: A Problog model for analyzing gene regulatory networks. In: Riguzzi, F., Zelezný, F. (eds.) Late Breaking Papers of the 22nd International Conference on Inductive Logic Programming, Dubrovnik, Croatia, 17–19 September 2012. CEUR Workshop Proceedings, vol. 975, pp. 38–43. CEUR-WS.org (2012)

    Google Scholar 

  30. Goodman, N., Rozen, S., Stein, L.: Requirements for a deductive query language in the mapbase genome-mapping database. In: Ramakrishnan, R. (ed.) Proceedings of the Workshop on Programming with Logic Databases. In Conjunction with ILPS, Vancouver, BC, Canada, October 30, 1993. Technical Report, vol. 1183, pp. 18–32. University of Wisconsin (1993)

    Google Scholar 

  31. Gouret, P., Thompson, J.D., Pontarotti, P.: PhyloPattern: regular expressions to identify complex patterns in phylogenetic trees. BMC Bioinformatics 10, 298 (2009)

    Article  Google Scholar 

  32. Gouret, P., Vitiello, V., Balandraud, N., Gilles, A., Pontarotti, P., Danchin, E.G.J.: FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. BMC Bioinform. 6, 198 (2005)

    Article  Google Scholar 

  33. Gray, P.M.D., Paton, N.W., Kemp, G.J.L., Fothergill, J.E.: An object-oriented database for protein structure analysis. Protein Eng. Des. Sel. 3(4), 235–243 (1990)

    Article  Google Scholar 

  34. Gupta, G., et al.: Semantics-based filtering: logic programming’s Killer app. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 82–100. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45587-6_7

    Chapter  Google Scholar 

  35. Gupta, G., et al.: Prolog: past, present, and future. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI 13900, pp. 48–61. Springer, Cham (2023)

    Google Scholar 

  36. Hanekamp, K., Bohnebeck, U., Beszteri, B., Valentin, K.: PhyloGena - a user-friendly system for automated phylogenetic annotation of unknown sequences. Bioinformatics 23(7), 793–801 (2007)

    Article  Google Scholar 

  37. Hearne, C., Cui, Z., Parsons, S., Hajnal, S., et al.: Prototyping a genetics deductive database. In: ISMB. vol. 2, pp. 170–178 (1994)

    Google Scholar 

  38. Heidtke, K.R., Schulze-Kremer, S.: BioSim: a new qualitative simulation environment for molecular biology. In: Glasgow, J.I., Littlejohn, T.G., Major, F., Lathrop, R.H., Sankoff, D., Sensen, C.W. (eds.) Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology (ISMB-98), Montréal, Québec, Canada, 28 June - 1 July, 1998. pp. 85–94. AAAI (1998)

    Google Scholar 

  39. Ishikawa, T., Terano, T.: Using analogical reasoning to predict a protein structure. Genome Inform. 4, 339–346 (1993)

    Google Scholar 

  40. Ishikawa, T., Terano, T.: How to predict it: inductive prediction by analogy using taxonomic information. In: Proceedings of the Third International Conference on Multistrategy Learning, pp. 285–293. AAAI Press (1996)

    Google Scholar 

  41. Jamil, H.M.: A visual interface for querying heterogeneous phylogenetic databases. IEEE ACM Trans. Comput. Biol. Bioinform. 14(1), 131–144 (2017)

    Article  Google Scholar 

  42. Jamil, H.M.: Optimizing phylogenetic queries for performance. IEEE ACM Trans. Comput. Biol. Bioinform. 15(5), 1692–1705 (2018)

    Google Scholar 

  43. Joubert, M., Fieschi, M., Fieschi, D., Roux, M.: Medical decision aid: Logic bases of the system SPHINX. In: Caneghem, M.V. (ed.) Proceedings of the First International Logic Programming Conference, Faculté des Science de Luminy, ADDP-GIA, Marseille, France, September, 14–17, 1982, pp. 210–214. ADDP-GIA (1982)

    Google Scholar 

  44. Kazic, T.: Representation, reasoning and the intermediary metabolism of Escherichia coli. In: Proceedings of the Annual Hawaii International Conference on System Sciences, vol. 1, pp. 853–862 (1993)

    Google Scholar 

  45. Kazic, T.: Representation of biochemistry for modeling organisms. In: Kumosinski, T.F., Liebman, M.N. (eds.) Molecular Modeling, pp. 486–494. American Chemical Society, Washington, DC (1994)

    Chapter  Google Scholar 

  46. Kemp, G.J.L., Gray, P.M.D.: Finding hydrophobic microdomains using an object-oriented database. Comput. Appl. Biosci. 6(4), 357–363 (1990)

    Google Scholar 

  47. Kemp, G.J.L., Jiao, Z., Gray, P.M.D., Fothergill, J.E.: Combining computation with database access in biomolecular computing. In: Litwin, W., Risch, T. (eds.) ADB 1994. LNCS, vol. 819, pp. 317–335. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58183-9_57

    Chapter  Google Scholar 

  48. Leung, S., Mellish, C., Robertson, D.: Basic Gene Grammars and DNA-ChartParser for language processing of Escherichia coli promoter DNA sequences. Bioinform. 17(3), 226–236 (2001)

    Article  Google Scholar 

  49. Lusk, E.L., Overbeek, R.A., Mudambi, S., Szeredi, P.: Applications of the aurora parallel Prolog system to computational molecular biology. In: Workshop on Concurrent and Parallel Implementations (sessions A and B), held at IJCSLP’92, Washington, DC, USA, November 1992 (1992)

    Google Scholar 

  50. Lyall, A., Hammond, P., Brough, D., Glover, D.: BIOLOG - a DNA sequence analysis system in Prolog. Nucleic Acids Res. 12(1), 633–642 (1984)

    Article  Google Scholar 

  51. MacKay, K., Carlsson, M., Kusalik, A.: GeneRHi-C: 3D GENomE reconstruction from Hi-C data. In: Proceedings of the 10th International Conference on Computational Systems-Biology and Bioinformatics, CSBIO 2019. ACM (2019)

    Google Scholar 

  52. Maddison, D., Swofford, D., Maddison, W.: NEXUS: an extensible file format for systematic information. Syst. Biol. 46(4), 590–621 (1997)

    Article  Google Scholar 

  53. Meneghetti, A.: Exploiting fashion features for floor storage systems in the shoe industry. Int. J. Eng. Bus. Manage. 5, SPL.ISSUE (2013)

    Google Scholar 

  54. Mørk, S., Holmes, I.: Evaluating bacterial gene-finding hmm structures as probabilistic logic programs. Bioinformatics 28(5), 636–642 (2012)

    Article  Google Scholar 

  55. Muggleton, S.: Inverse entailment and Progol. N. Gener. Comput. 13(3–4), 245–286 (1995)

    Article  Google Scholar 

  56. Muggleton, S., King, R.D., Sternberg, M.J.E.: Using logic for protein structure prediction. In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, vol. 1, pp. 685–696 (1992)

    Google Scholar 

  57. Muggleton, S., Srinivasan, A., King, R.D., Sternberg, M.J.E.: Biochemical knowledge discovery using inductive logic programming. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 326–341. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49292-5_29

    Chapter  Google Scholar 

  58. Mungall, C.: Experiences using logic programming in bioinformatics. Lect. Notes Comput. Sci. 5649, 1–21 (2009)

    Article  Google Scholar 

  59. Nakhleh, L., Miranker, D.P., Barbançon, F., Piel, W.H., Donoghue, M.J.: Requirements of phylogenetic databases. In: 3rd IEEE International Symposium on BioInformatics and BioEngineering (BIBE) 2003, 10–12 March 2003, Bethesda, MD, USA, pp. 141–148. IEEE Computer Society (2003)

    Google Scholar 

  60. Nguyen, T.H., Pontelli, E., Son, T.C.: Phylotastic: an experiment in creating, manipulating, and evolving phylogenetic biology workflows using logic programming. Theory Pract. Logic Program. 18(3–4), 656–672 (2018)

    Article  MathSciNet  Google Scholar 

  61. Overbeek, R.A.: Logic programming and genetic sequence analysis: a tutorial. In: Apt, K.R. (ed.) Logic Programming, Proceedings of the Joint International Conference and Symposium on Logic Programming, JICSLP 1992, Washington, DC, USA, November 1992, pp. 32–34. MIT Press (1992)

    Google Scholar 

  62. Pan, Y., Pontelli, E., Son, T.: BSIS: an experiment in automating bioinformatics tasks through intelligent workflow construction. In: Chen, H., Wang, Y., Cheung, K.H. (eds.) Semantic e-Science, pp. 189–238. Springer, Cham (2010). https://doi.org/10.1007/978-1-4419-5908-9_6

  63. Prosdocimi, F., Chisham, B., Pontelli, E., Thompson, J., Stoltzfus, A.: Initial Implementation of a Comparative Data Analysis Ontology. Evol. Bioinforma. 5, 47–66 (2009)

    Article  Google Scholar 

  64. Rawlings, C.J., Taylor, W.R., Nyakairu, J., Fox, J., Sternberg, M.J.E.: Reasoning about protein topology using the logic programming language Prolog. J. Mol. Graph. 3(4), 151–157 (1985)

    Article  Google Scholar 

  65. Rawlings, C.J., Taylor, W.R., Taylor, W.R., Nyakairu, J., Fox, J., Sternberg, M.J.E.: Using prolog to represent and reason about protein structure. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 536–543. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16492-8_101

    Chapter  Google Scholar 

  66. Riguzzi, F., Cota, G., Bellodi, E., Zese, R.: Causal inference in cplint. Int. J. Approx. Reason. 91, 216–232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Rosenblueth, D.A., Thieffry, D., Huerta, A.M., Salgado, H., Collado-Vides, J.: Syntactic recognition of regulatory regions in Escherichia coli. Comput. Appl. Biosci. 12(5), 415–422 (1996)

    Google Scholar 

  68. Saldanha, J., Eccles, J.R.: GENPRO: automatic generation of Prolog clause files for knowledge-based systems in the biomedical sciences. Comput. Methods Programs Biomed. 28(3), 207–214 (1989)

    Article  Google Scholar 

  69. Saldanha, J., Eccles, J.R.: The application of SSADM to modelling the logical structure of proteins. Bioinformatics 7(4), 515–524 (1991)

    Article  Google Scholar 

  70. Saldanha, J., Mahadevan, D.: Molecular model-building of amylin and \(\alpha \)-calcitonin gene-related polypeptide hormones using a combination of knowledge sources. Protein Eng. Des. Sel. 4(5), 539–544 (1991)

    Article  Google Scholar 

  71. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP 95), pp. 715–729 (1995)

    Google Scholar 

  72. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  73. Shu, W., Lan, J.: Design a pathway/genome expert system using a Prolog machine incorporated with a parallel hardware searcher. In: Proceedings of the Asia Pacific Association of Medical Informatics, APAMI, pp. 9–14 (2006)

    Google Scholar 

  74. Stebbing, J., et al.: Characterization of the tyrosine kinase-regulated proteome in breast cancer by combined use of RNA interference (rnai) and stable isotope labeling with amino acids in cell culture (silac) quantitative proteomics. Mol. Cell. Proteomics 14(9), 2479–2492 (2015)

    Article  Google Scholar 

  75. Tarzariol, A., Zanazzo, E., Dovier, A., Policriti, A.: Towards a logic programming tool for cancer data analysis. Fundam. Informaticae 176(3–4), 299–319 (2020)

    Article  MathSciNet  Google Scholar 

  76. Todd, S., Morffew, A., Burridge, J.: Application of relational database and graphics to the molecular sciences. In: Longstaff, J. (ed.) Proceedings of the Third British National Conference on Databases (BNCOD) 3, Leeds, UK, July 11–13, 1984, pp. 1–13. Cambridge University Press (1984)

    Google Scholar 

  77. Tsur, S., Olken, F., Naor, D.: Deductive databases for genomic mapping (extended abstract). In: Chomicki, J. (ed.) Proceedings of the Workshop on Deductive Databases held in conjunction with the North American Conference on Logic Programming, Austin, Texas, USA, November 1, 1990. Technical Report, vol. TR-CS-90-14. Kansas State University (1990)

    Google Scholar 

  78. Turcotte, M., Muggleton, S., Sternberg, M.J.E.: Use of inductive logic programming to learn principles of protein structure. Electron. Trans. Artif. Intell. 4(B), 119–124 (2000)

    Google Scholar 

  79. Turcotte, M., Muggleton, S., Sternberg, M.J.E.: Generating protein three-dimensional fold signatures using inductive logic programming. Comput. Chem. 26(1), 57–64 (2002)

    Article  Google Scholar 

  80. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  81. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog: 50 Years of Future, LNAI 13900, pp. 3–19. Springer, Cham (2023)

    Google Scholar 

  82. Wong, W.K.C.: Logic programming and deductive databases for genomic computations: A comparison between Prolog and LDL. In: Proceedings of the Annual Hawaii International Conference on System Sciences. vol. 1, pp. 834–843. IEEE Computer Society (1993)

    Google Scholar 

  83. Yoshida, K., et al.: Toward a human genome encyclopedia. In: Proceedings of the International Conference on Fifth Generation Computer Systems. FGCS 1992, June 1–5, Tokyo, Japan, pp. 307–320. IOS Press (1992)

    Google Scholar 

  84. Zupan, B., et al.: GenePath: a system for automated construction of genetic networks from mutant data. Bioinform. 19(3), 383–389 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers that allowed us to greatly improve the focus and the presentation of the paper. This research is partially supported by INdAM-GNCS projects CUP E55F22000270001 and CUP E53C22001930001, by Interdepartmental Project on AI (Strategic Plan UniUD-22-25), and by NSF grants 2151254 and 1914635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Dovier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E. (2023). Prolog Meets Biology. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowalski, R., Rossi, F. (eds) Prolog: The Next 50 Years. Lecture Notes in Computer Science(), vol 13900. Springer, Cham. https://doi.org/10.1007/978-3-031-35254-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35254-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35253-9

  • Online ISBN: 978-3-031-35254-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics