Skip to main content

Logic-Based Explainable and Incremental Machine Learning

  • Chapter
  • First Online:
Prolog: The Next 50 Years

Abstract

Mainstream machine learning methods lack interpretability, explainability, incrementality, and data-economy. We propose using logic programming to rectify these problems. We discuss the FOLD family of rule-based machine learning algorithms that learn models from relational datasets as a set of default rules. These models are competitive with state-of-the-art machine learning systems in terms of accuracy and execution efficiency. We also motivate how logic programming can be useful for theory revision and explanation based learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Neural Networks and Deep Learning - A Textbook. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94463-0

  2. Arias, J., et al.: Constraint answer set programming without grounding. TPLP 18(3–4), 337–354 (2018)

    Google Scholar 

  3. Arias, J., et al.: Justifications for goal-directed constraint answer set programming. In: Proceedings 36th International Conference on Logic Programming (Technical Communications), vol. 325. EPTCS, pp. 59–72 (2020)

    Google Scholar 

  4. Basu, K., et al.: Symbolic reinforcement learning framework with incremental learning of rule-based policy. In: Proceedings of ICLP GDE’22 Workshop, vol. 3193. CEUR Workshop Proceedings. CEUR-WS.org (2022)

    Google Scholar 

  5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD. KDD ’16, San Francisco, California, USA, pp. 785–794 (2016). ISBN 978-1-4503-4232-2

    Google Scholar 

  6. Cohen, W.W.: Fast effective rule induction. In: Proceedings of ICML, San Francisco, CA, USA, pp. 115–123 (1995)

    Google Scholar 

  7. Cropper, A., Dumancic, S.: Inductive logic programming at 30: a new introduction. arXiv:2008.07912 (2020)

  8. DeJong, G., Mooney, R.J.: Explanation-based learning: an alternative view. Mach. Learn. 1(2), 145–176 (1986)

    Google Scholar 

  9. Dietz Saldanha, E.A., Hölldobler, S., Pereira, L.M.: Our themes on abduction in human reasoning: a synopsis. In: Abduction in Cognition and Action: Logical Reasoning, Scientific Inquiry, and Social Practice, pp. 279–293 (2021)

    Google Scholar 

  10. Dimopoulos, Y., Kakas, A.: Learning non-monotonic logic programs: learning exceptions. In: Lavrac, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 122–137. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59286-5_53

    Chapter  Google Scholar 

  11. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theories. Mach. Learn. 19(2), 95–131 (1995)

    Google Scholar 

  12. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: the Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  13. van Harmelen, F., Bundy, A.: Explanation-based generalisation = partial evaluation. Artif. Intell. 36(3), 401–412 (1988)

    Google Scholar 

  14. Laber, E., Molinaro, M., Pereira, F.M.: Binary partitions with approximate minimum impurity. In: by Dy, J., Krause, A. (eds.) Proceedings of ICML, vol. 80, pp. 2854–2862. Proceedings of Machine Learning Research. PMLR (2018)

    Google Scholar 

  15. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

    Google Scholar 

  16. Minton, S., et al.: Explanation-based learning: a problem solving perspective. Artif. Intell. 40(1–3), 63–118 (1989)

    Google Scholar 

  17. Mitchener, L., et al.: Detect, understand, act: a neuro-symbolic hierarchical reinforcement learning framework. Mach. Learn. 111(4), 1523–1549 (2022)

    Google Scholar 

  18. Padalkar, P., Wang, H., Gupta, G.: NeSyFOLD: a system for generating logic-based explanations from convolutional neural networks. arXiv:2301.12667 (2023)

  19. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266 (1990)

    Google Scholar 

  20. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)

    Google Scholar 

  21. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of KDD, pp. 1135–1144. ACM (2016)

    Google Scholar 

  22. Shakerin, F.: Logic programming-based approaches in explainable AI and natural language processing. Ph.D. thesis, Department of Computer Science, The University of Texas at Dallas (2020)

    Google Scholar 

  23. Shakerin, F., Gupta, G.: Induction of non-monotonic logic programs to explain boosted tree models using LIME. In: Proceeding of AAAI, pp. 3052–3059. AAAI Press (2019)

    Google Scholar 

  24. Shakerin, F., Gupta, G.: Induction of non-monotonic rules from statistical learning models using high-utility itemset mining. arXiv:1905.11226 (2019)

  25. Shakerin, F., Salazar, E., Gupta, G.: A new algorithm to automate inductive learning of default theories. TPLP 17(5–6), 1010–1026 (2017)

    Google Scholar 

  26. Srinivasan, A., Muggleton, S.H., Bain, M.: Distinguishing exceptions from noise in non-monotonic learning. In: Proceedings of International Workshop on Inductive Logic Programming (1992)

    Google Scholar 

  27. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT Press, Cambridge (2008)

    Google Scholar 

  28. Wang, H., Gupta, G.: FOLD-R++: a scalable toolset for automated inductive learning of default theories from mixed data. In: Hanus, M., Igarashi, A. (eds.) FLOPS 2022. LNCS, vol. 13215, pp. 224–242. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99461-7_13, isbn: 978-3-030-99460-0

  29. Wang, H., Gupta, G.: FOLD-SE: scalable explainable AI (2022)

    Google Scholar 

  30. Wang, H., Gupta, G.: FOLD-TR: a scalable and efficient inductive learning algorithm for learning to rank (2022). arXiv: 2206.07295

  31. Wang, H., Shakerin, F., Gupta, G.: FOLD-RM: efficient scalable explainable AI. TPLP 22(5), 658–677 (2022)

    Google Scholar 

  32. Wusteman, J.: Explanation-based learning: a survey. Artif. Intell. Rev. 6(3), 243–262 (1992)

    Google Scholar 

  33. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set programming. In: Bessiere, C. (ed.) IJCAI 2020, pp. 1755–1762 (2020)

    Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous reviewers and to Bob Kowalski for insightful comments that helped in significantly improving this paper. Authors acknowledge partial support from NSF grants IIS 1910131, IIP 1916206, and US DoD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, G. et al. (2023). Logic-Based Explainable and Incremental Machine Learning. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowalski, R., Rossi, F. (eds) Prolog: The Next 50 Years. Lecture Notes in Computer Science(), vol 13900. Springer, Cham. https://doi.org/10.1007/978-3-031-35254-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35254-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35253-9

  • Online ISBN: 978-3-031-35254-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics