Skip to main content

Approximately Learning Quantum Automata

  • Conference paper
  • First Online:
Theoretical Aspects of Software Engineering (TASE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13931))

Included in the following conference series:

  • 337 Accesses

Abstract

In this paper, we provide two methods for learning measure-once one-way quantum finite automata using a combination of active learning and non-linear optimization. First, we learn the number of states of a measure-once one-way quantum automaton using a heuristic binary tree representing the different variations of a Hankel matrix. Then we use two optimization methods to learn the unitary matrices representing the transitions of the automaton. When comparing the original automaton with the one learned, we provide a new way to compute the distance on the base of the language of the combined quantum automata. Finally, we show, using experiments on a set of randomly generated quantum automata, which method performs better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control 39(3), 337–350 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angluin, D.: Identifying languages from stochastic examples. Yale University, Department of Computer Science (1988)

    Google Scholar 

  4. Angluin, D., Smith, C.H.: Inductive inference: theory and methods. ACM Comput. Surv. (CSUR) 15(3), 237–269 (1983)

    Article  MathSciNet  Google Scholar 

  5. Arunachalam, S., De Wolf, R.: Optimal quantum sample complexity of learning algorithms. J. Mach. Learn. Res. 19(1), 2879–2878 (2018)

    Google Scholar 

  6. Arunachalam, S., de Wolf, R.: Guest column: a survey of quantum learning theory. ACM SIGACT News 48(2), 41–67 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and equivalence queries. SIAM J. Comput. 25(6), 1268–1280 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theor. Comput. Sci. 262(1–2), 69–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: IJCAI. vol. 9, pp. 1004–1009 (2009)

    Google Scholar 

  10. Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniform distribution using a quantum example oracle. In: Proceedings of the Eighth Annual Conference on Computational Learning Theory, pp. 118–127 (1995)

    Google Scholar 

  11. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58473-0_144

    Chapter  MATH  Google Scholar 

  12. Chalupar, G., Peherstorfer, S., Poll, E., De Ruiter, J.: Automated reverse engineering using \(\{\)Lego®\(\}\). In: 8th USENIX Workshop on Offensive Technologies (WOOT 14) (2014)

    Google Scholar 

  13. Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig, M.: Learning the language of error. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 114–130. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_9

    Chapter  Google Scholar 

  14. Cho, C.Y., Babi ć, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 426–439 (2010)

    Google Scholar 

  15. Chu, W., Bonsangue, M.: Learning probabilistic languages by k-testable machines. In: 2020 International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 129–136. IEEE (2020)

    Google Scholar 

  16. Chu, W., Chen, S., Bonsangue, M.: Non-linear optimization methods for learning regular distributions. In: Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineering. ICFEM 2022. LNCS, vol. 13478, pp. 54–70. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-1_4

  17. De Ruiter, J., Poll, E.: Protocol state fuzzing of \(\{\)TLS\(\}\) implementations. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 193–206 (2015)

    Google Scholar 

  18. Esposito, Y., Lemay, A., Denis, F., Dupont, P.: Learning probabilistic residual finite state automata. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 77–91. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45790-9_7

    Chapter  Google Scholar 

  19. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_25

    Chapter  Google Scholar 

  20. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict sense. In: ALT, pp. 325–338 (1990)

    Google Scholar 

  21. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control 37(3), 302–320 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grefenstette, J.J.: Genetic algorithms and machine learning. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, pp. 3–4 (1993)

    Google Scholar 

  24. Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance. Int. J. Found. Comput. Sci. 26(03), 381–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint arXiv:1604.00772 (2016)

  26. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  27. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings 38th Annual Symposium on Foundations of Computer Science, pp. 66–75. IEEE (1997)

    Google Scholar 

  28. Koshiba, T.: Polynomial-time algorithms for the equivalence for one-way quantum finite automata. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 268–278. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3_24

    Chapter  MATH  Google Scholar 

  29. Lin, T.: Another approach to the equivalence of measure-many one-way quantum finite automata and its application. J. Comput. Syst. Sci. 78(3), 807–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237(1–2), 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. de Nobel, J., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1375–1384 (2021)

    Google Scholar 

  32. Parekh, R., Nichitiu, C., Honavar, V.: A polynomial time incremental algorithm for learning DFA. In: Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 37–49. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054062

    Chapter  Google Scholar 

  33. Qiu, D.: Learning quantum finite automata with queries. arXiv preprint arXiv:2111.14041 (2021)

  34. Schmidt, E.: Zur theorie der linearen und nichtlinearen integralgleichungen. Math. Ann. 63(4), 433–476 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  35. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  36. Wharton, R.M.: Approximate language identification. Inf. Control 26(3), 236–255 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Chu or Marcello Bonsangue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, W., Chen, S., Bonsangue, M., Shi, Z. (2023). Approximately Learning Quantum Automata. In: David, C., Sun, M. (eds) Theoretical Aspects of Software Engineering. TASE 2023. Lecture Notes in Computer Science, vol 13931. Springer, Cham. https://doi.org/10.1007/978-3-031-35257-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35257-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35256-0

  • Online ISBN: 978-3-031-35257-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics