Skip to main content

Studying the Workload of a Fully Decentralized Web3 System: IPFS

  • Conference paper
  • First Online:
Distributed Applications and Interoperable Systems (DAIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13909))

  • 217 Accesses

Abstract

In this paper we present a study of the workload of the InterPlanetary File System (IPFS), a decentralized file system which is a key enabler of Web3. Our study focuses on the access patterns observed from one of the most popular IPFS gateways located in North America, and analyzes these access patterns in light of one of the most common assumptions made in regard to the access pattern of decentralized content sharing systems: that the access patterns are mostly geographically localized. However, through our study, we show that the access patterns are content-dependent rather than geographically localized. In our study, we found that access patterns mostly target a small set of popular content, which is provided by nodes in the North American and European regions, despite the location of the requester. Furthermore, we found that, interestingly, this popular content is only provided by a few nodes in the system, suggesting a significant imbalance both in content providers and in the access patterns of the system to the content. This in turn suggests that the system is significantly centralized on these few node providers.

This work was partially supported by FCT/MCTES grant SFRH/BD/144023/2019 and by the European Union’s Horizon Europe Research and Innovation Programme under Grant Agreement No 101093006. Artifacts available in https://doi.org/10.5281/zenodo.7850384.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araujo, F., Rodrigues, L.: Geopeer: a location-aware peer-to-peer system. In: Proceedings of Third IEEE International Symposium on Network Computing and Applications (NCA 2004), pp. 39–46 (2004)

    Google Scholar 

  2. Balduf, L., Henningsen, S., Florian, M., Rust, S., Scheuermann, B.: Monitoring data requests in decentralized data storage systems: a case study of IPFS. In: 2022 IEEE 42nd ICDCS, IEEE (2022)

    Google Scholar 

  3. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. Technical Report Draft vol. 3 (2014)

    Google Scholar 

  4. Berty. Berty: the privacy-first messaging app. https://berty.tech/ (2022) Accessed Oct 2022

  5. ConsenSys. Consensys: Ipfs look up measurement. https://github.com/ConsenSys/ipfs-lookup-measurement/ (2022). Accessed Feb 2022

  6. Costa, P., Leitão, J., Psaras, Y.: Anonymised IPFS gateway logs from 7th of March of 2022 to 21st of March of 2022. https://doi.org/10.5281/zenodo.7876622, April 2023

  7. D’Ambrosio, M., Dannewitz, C., Karl, H., Vercellone, V.: Mdht: a hierarchical name resolution service for information-centric networks. In: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, ICN 2011, pp. 7–12, New York, NY, USA, Association for Computing Machinery (2011)

    Google Scholar 

  8. de la Rocha, A., Dias, D., Yiannis, P.: A multi-path file transfer protocol in IPFs and filecoin. Technical report, Accelerating content routing with bitswap (2021)

    Google Scholar 

  9. Discussify. Discussify. https://github.com/ipfs-shipyard/pm-discussify (2022). Accessed Oct 2022

  10. Fleek. Fleek: build on the new internet. https://fleek.co/, (2022). Accessed Oct 2022

  11. BitTorrent Foundation. Bittorrent (btt) white paper. https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf (2019)

  12. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud computing vulnerabilities. IEEE Secur. Priv. 9(2), 50–57 (2011)

    Google Scholar 

  13. Gross, C., Stingl, D., Richerzhagen, B., Hemel, A., Steinmetz, R., Hausheer, D.: Geodemlia: a robust peer-to-peer overlay supporting location-based search. In: 2012 IEEE 12th International Conference on Peer-to-Peer Computing (P2P), pp. 25–36 (2012)

    Google Scholar 

  14. Henningsen, S., Florian, M., Rust, S., Scheuermann, B.: Mapping the interplanetary filesystem. In: 2020 IFIP Networking Conference (Networking) (2020)

    Google Scholar 

  15. Heo, H., Shin, S.: Behind block explorers: public blockchain measurement and security implication. In: 2021 IEEE 41st ICDCS (2021)

    Google Scholar 

  16. Korpal, G., Scott, D.: Decentralization and web3 technologies. Technical report, May 2022

    Google Scholar 

  17. Kovacevic, A., Liebau, N., Steinmetz, R.: Globase.kom - a p2p overlay for fully retrievable location-based search. In: 2007 7th International Conference on Peer-to-Peer Computing, pp. 87–96, Los Alamitos, CA, USA, IEEE Computer Society, September 2007

    Google Scholar 

  18. Kumar, S., Gautam, H., Singh, S., Shafeeq, M.: Top vulnerabilities in cloud computing. ECS Trans. 107(1), 16887 (2022)

    Article  Google Scholar 

  19. Lee, X.T., Khan, A., Gupta, S.S., Ong, Y.H., Liu, X.: Measurements, analyses, and insights on the entire ethereum blockchain network. In: Proceedings of The Web Conference 2020, WWW ’20 (2020)

    Google Scholar 

  20. Leitão, J.: Gossip-based broadcast protocols. Master’s thesis, Faculdade de Ciências da Universidade de Lisboa (2007)

    Google Scholar 

  21. Leitao, J., Marques, J.P., Pereira, J.O., Rodrigues, L.: X-bot: a protocol for resilient optimization of unstructured overlays. In: 2009 28th IEEE International Symposium on Reliable Distributed Systems, pp. 236–245 (2009)

    Google Scholar 

  22. Leitão, J., Marques, J.P., Pereira, J.O., Rodrigues, L.: X-bot: a protocol for resilient optimization of unstructured overlay networks. IEEE Trans. Parallel Distrib. Syst. 23(11), 2175–2188 (2012)

    Article  Google Scholar 

  23. Leitão, J.: Topology management for unstructured overlay networks. Phd thesis (2010)

    Google Scholar 

  24. MaxMind. Maxmind - geolite2 free geolocation data. https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en (2022). Accessed Oct 2022

  25. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

    Chapter  MATH  Google Scholar 

  26. Monteiro, J., Costa, P.A., Leitão, J., de la Rocha, A., Psaras, Y.: Enriching kademlia by partitioning. In: Proceedings of the 1st Workshop on Decentralized Internet, Networks, Protocols, and Systems (DINPS’22) colocated with ICDCS (2022)

    Google Scholar 

  27. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. (2008)

    Google Scholar 

  28. NFT.STORAGE. Nft storage: Free storage for NFTS. https://nft.storage/ (2022). Accessed Oct 2022

  29. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The Bittorrent P2P file-sharing system: measurements and analysis. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 205–216. Springer, Heidelberg (2005). https://doi.org/10.1007/11558989_19

    Chapter  Google Scholar 

  30. Protocol Labs. libp2p: a modular network stack. https://libp2p.io (2022). Accessed Feb 2022

  31. Ratti, S., Hariri, B., Shirmohammadi, S.: Nl-dht: a non-uniform locality sensitive DHT architecture for massively multi-user virtual environment applications. In: 2008 14th IEEE International Conference on Parallel and Distributed Systems, pp. 793–798 (2008)

    Google Scholar 

  32. Rodrigues, R., Druschel, P.: Peer-to-peer systems. Commun. ACM 53(10), 72–82 (2010)

    Article  Google Scholar 

  33. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, IMW 2002 (2002)

    Google Scholar 

  34. Trautwein, D.: Design and evaluation of IPFs: a storage layer for the decentralized web. In: Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM 2022 (2022)

    Google Scholar 

  35. Uniswap. Uniswap protocol: swap, earn, and build on the leading decentralized crypto trading protocol. https://uniswap.org/ (2022). Accessed Oct 2022

  36. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Technical report (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Ákos Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, P.Á., Leitão, J., Psaras, Y. (2023). Studying the Workload of a Fully Decentralized Web3 System: IPFS. In: Patiño-Martínez, M., Paulo, J. (eds) Distributed Applications and Interoperable Systems. DAIS 2023. Lecture Notes in Computer Science, vol 13909. Springer, Cham. https://doi.org/10.1007/978-3-031-35260-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35260-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35259-1

  • Online ISBN: 978-3-031-35260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics