Skip to main content

Generating Short-Axis DENSE Images from 4D XCAT Phantoms: A Proof-of-Concept Study

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Displacement ENcoding with Stimulated Echoes (DENSE) is a CMR modality that can encode myocardial tissue displacement at a pixel level, enabling the characterization of cardiac disease at early stages. However, we do not currently have a way of evaluating the accuracy of derived results, since the ground truth is unknown. In this study, we developed a proof-of-concept pipeline to generate realistic DENSE images with a known ground truth. We leverage the XCAT tool to create body anatomies, along with associated myocardial tissue displacements, and generate DENSE images with a Bloch simulation based on the time-resolved positions. We generated 6 samples: an apical, a mid, and a basal short-axis slice for both male and female anatomy. We then extracted radial and circumferential strain components using DENSEanalysis, and compared them to the ground-truth strain obtained from the XCAT displacements. While the reproducibility of the strain calculations was similar to the inter-observer variability from previous studies, and the bias in circumferential strain was small (0.03 ± 0.02), the current methods for strain extraction resulted in a bias in radial strain of 0.19 ± 0.19. There is a need to develop better regularization strategies for DENSE analysis, for instance using Deep Learning, and this study provides initial groundwork for obtaining ground-truth strain to evaluate these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aletras, A.H., Ding, S., Balaban, R.S., Wen, H.: DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J. Magn. Reson. 137(1), 247–252 (1999). https://doi.org/10.1006/jmre.1998.1676

    Article  Google Scholar 

  2. Amirrajab, S., et al.: XCAT-GAN for synthesizing 3D consistent labeled cardiac MR images on anatomically variable XCAT phantoms. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 128–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_13

    Chapter  Google Scholar 

  3. Auger, D.A., et al.: Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J. Cardiovasc. Magn. Reson. 24(1), 23 (2022). https://doi.org/10.1186/S12968-022-00851-7

    Article  Google Scholar 

  4. Barbaroux, H., et al.: Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks. J. Cardiovasc. Magn. Reson. 25(1), 1–17 (2023). https://doi.org/10.1186/S12968-023-00927-Y

    Article  Google Scholar 

  5. Barbaroux, H., Scott, A.D., Young, A.A.: Extending DENSEanalysis for automated and faster DENSE strain processing. In: Proceedings from the 26th Annual Society for Cardiovascular Magnetic Resonance (SCMR) Scientific Sessions, p. 1351770 (2023). https://doi.org/10.13140/RG.2.2.32980.07043

  6. Bojorquez, J.Z., Bricq, S., Acquitter, C., Brunotte, F., Walker, P.M., Lalande, A.: What are normal relaxation times of tissues at 3 T? Magn. Reson. Imaging 35, 69–80 (2017). https://doi.org/10.1016/J.MRI.2016.08.021

    Article  Google Scholar 

  7. Bond, J., Frush, D., Samei, E., Segars, W.P.: Simulation of anatomical texture in voxelized XCAT phantoms. In: Medical Imaging 2013: Physics of Medical Imaging, vol. 8668, p. 86680N. SPIE (2013). https://doi.org/10.1117/12.2008422

  8. Ghadimi, S., et al.: Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. J. Cardiovasc. Magn. Reson. 23(1), 20 (2021). https://doi.org/10.1186/s12968-021-00712-9

    Article  Google Scholar 

  9. Gilliam, A.D., Suever, J.D., et al.: DENSEanalysis (2021). https://github.com/denseanalysis/denseanalysis

  10. Ibrahim, E.S.H.: Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques-pulse sequences, analysis algorithms, and applications. J. Cardiovasc. Magn. Reson. 13(1), 1–40 (2011). https://doi.org/10.1186/1532-429X-13-36

    Article  Google Scholar 

  11. Ishizu, T., et al.: Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur. J. Echocardiogr. 11(4), 377–385 (2010). https://doi.org/10.1093/EJECHOCARD/JEP221

    Article  Google Scholar 

  12. Kar, J., Cohen, M.V., McQuiston, S.A., Poorsala, T., Malozzi, C.M.: Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network. J. Biomech. 130, 110878 (2022). https://doi.org/10.1016/J.JBIOMECH.2021.110878

    Article  Google Scholar 

  13. Kar, J., Cohen, M.V., McQuiston, S.P., Malozzi, C.M.: A deep-learning semantic segmentation approach to fully automated MRI-based left-ventricular deformation analysis in cardiotoxicity. Magn. Reson. Imaging 78, 127–139 (2021). https://doi.org/10.1016/J.MRI.2021.01.005

    Article  Google Scholar 

  14. Kim, D., Gilson, W.D., Kramer, C.M., Epstein, F.H.: Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 230(3), 862–871 (2004). https://doi.org/10.1148/RADIOL.2303021213

    Article  Google Scholar 

  15. Lin, K., Meng, L., Collins, J.D., Chowdhary, V., Markl, M., Carr, J.C.: Reproducibility of cine displacement encoding with stimulated echoes (DENSE) in human subjects. Magn. Reson. Imaging 35, 148–153 (2017). https://doi.org/10.1016/j.mri.2016.08.009

    Article  Google Scholar 

  16. Mella, H., Mura, J., Sotelo, J., Uribe, S.: A comprehensive comparison between shortest-path HARP refinement, SinMod, and DENSEanalysis processing tools applied to CSPAMM and DENSE images. Magn. Reson. Imaging 83, 14–26 (2021). https://doi.org/10.1016/J.MRI.2021.07.001

    Article  Google Scholar 

  17. Moaveni, S.: Finite Element Analysis: Theory and Application with ANSYS. Prentice Hall, Hoboken (1999)

    Google Scholar 

  18. Muffoletto, M., et al.: Comparison of semi- and un-supervised domain adaptation methods for whole-heart segmentation. In: Oscar C., et al. (eds.) Statistical Atlases and Computational Models of the Heart, Regular and CMRxMotion Challenge Papers, STACOM 2022, vol. 13593 LNCS, pp. 91–100. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23443-9_9

  19. Potter, E., Marwick, T.H.: Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC: Cardiovasc. Imaging 11(2P1), 260–274 (2018). https://doi.org/10.1016/j.jcmg.2017.11.017

  20. Segars, W.P., Mahesh, M., Beck, T.J., Frey, E.C., Tsui, B.M.: Realistic CT simulation using the 4D XCAT phantom. Med. Phys. 35(8), 3800–3808 (2008). https://doi.org/10.1118/1.2955743

    Article  Google Scholar 

  21. Segars, W.P., Lalush, D.S., Frey, E.C., Manocha, D., King, M.A., Tsui, B.M.: Improved dynamic cardiac phantom based on 4D NURBS and tagged MRI. IEEE Trans. Nuclear Sci. 56(5), 2728–2738 (2009). https://doi.org/10.1109/TNS.2009.2016196

    Article  Google Scholar 

  22. Spottiswoode, B.S., et al.: Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans. Med. Imaging 26(1), 15–30 (2007). https://doi.org/10.1109/TMI.2006.884215

    Article  Google Scholar 

  23. Stanisz, G.J., et al.: T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med. 54(3), 507–512 (2005). https://doi.org/10.1002/MRM.20605

    Article  Google Scholar 

  24. Tops, L.F., Delgado, V., Marsan, N.A., Bax, J.J.: Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur. J. Heart Failure 19(3), 307–313 (2017). https://doi.org/10.1002/ejhf.694

    Article  Google Scholar 

  25. Wissmann, L., Santelli, C., Segars, W.P., Kozerke, S.: MRXCAT: realistic numerical phantoms for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 16(1), 1–11 (2014). https://doi.org/10.1186/S12968-014-0063-3

    Article  Google Scholar 

  26. Young, A.A., Li, B., Kirton, R.S., Cowan, B.R.: Generalized spatiotemporal myocardial strain analysis for DENSE and SPAMM imaging. Magn. Reson. Med. 67(6), 1590–1599 (2012). https://doi.org/10.1002/mrm.23142

    Article  Google Scholar 

  27. Zhong, X., Spottiswoode, B.S., Meyer, C.H., Kramer, C.M., Epstein, F.H.: Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 64(4), 1089–1097 (2010). https://doi.org/10.1002/MRM.22503

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by EPSRC Centre for Doctoral Training in Smart Medical Imaging (EP/S022104/1), by a Program Grant from the British Heart Foundation (RG/19/1/34160), and Siemens Healthineers. This work was supported by the National Institute of Health (NIH R01-HL131823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Barbaroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbaroux, H. et al. (2023). Generating Short-Axis DENSE Images from 4D XCAT Phantoms: A Proof-of-Concept Study. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics