Skip to main content

Modelling Blood Flow and Biochemical Reactions Underlying Thrombogenesis in Atrial Fibrillation

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Atrial fibrillation (AF) is a widespread cardiac disease associated with a high risk of thromboembolic stroke. Clinically applicable stroke-risk stratification schemes can be improved with a mechanistic understanding of the underlying thrombogenicity induced by AF – blood stasis, hypercoagulability and endothelial damage – known as Virchow’s triad. We propose a coupled biophysical modelling scheme which integrates all aspects of Virchow’s triad using computational fluid dynamics (CFD) to represent blood stasis, reaction–diffusion-convection equations for the blood coagulation cascade and the endothelial cell activation potential (ECAP) to quantify endothelial damage. This comprehensive workflow is tested on a 3D patient-specific geometry reproduced from cardiac Cine MRI data. The patient case was tested in both AF and regular sinus rhythm (SR) conditions with two thrombus initiation sites: i) peak ECAP in the LA appendage (LAA) and ii) positioned at the LAA tip, totalling four cases (A-D). Case A (SR and peak ECAP initiation) washed out all thrombogenic proteins after one cardiac cycle showing low risk of thrombus formation. Case D (AF and LAA tip initiation) led to unregulated clot formation, solidification and storage in the LAA. This finding suggests that the solidified thrombus may be ejected from the LAA and travel towards the brain if the patient reverted to SR. This novel pipeline provides a promising tool that can be extended to larger patient cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hindricks, G., et al.: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 42, 373–498 (2021). https://doi.org/10.1093/eurheartj/ehaa612

    Article  Google Scholar 

  2. Freedman, B., Potpara, T.S., Lip, G.Y.H.: Stroke prevention in atrial fibrillation. The Lancet. 388, 806–817 (2016). https://doi.org/10.1016/S0140-6736(16)31257-0

    Article  Google Scholar 

  3. Blackshear, J.L., Odell, J.A.: Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation (1996)

    Google Scholar 

  4. Ding, W.Y., Gupta, D., Lip, G.: Atrial fibrillation and the prothrombotic state: revisiting Virchow’s triad in 2020. Heart. heartjnl-2020-316977 (2020). https://doi.org/10.1136/heartjnl-2020-316977

  5. Palta, S., Saroa, R., Palta, A.: Overview of the coagulation system. Indian J Anaesth. 58, 515–23 (2014). https://doi.org/10.4103/0019-5049.144643

    Article  Google Scholar 

  6. Fukushima, K., et al.: Correlation between left atrial appendage morphology and flow velocity in patients with paroxysmal atrial fibrillation. Eur Heart J Cardiovasc Imaging. 17, 59–66 (2016). https://doi.org/10.1093/ehjci/jev117

    Article  Google Scholar 

  7. Goldman, M.E., et al.: Pathophysiologic Correlates of Thromboembolism in Nonvalvular Atrial Fibrillation: I. Reduced Flow Velocity in the Left Atrial Appendage (The Stroke Prevention in Atrial Fibrillation [SPAF-III] Study). Journal of the American Society of Echocardiography 12, 1080–1087 (1999). https://doi.org/10.1016/S0894-7317(99)70105-7

  8. Marín, F., Roldán, V., Climent, V.E., Ibáñez, A., García, A., Marco, P., Sogorb, F., Lip, G.Y.H.: Plasma von Willebrand factor, soluble thrombomodulin, and fibrin D-dimer concentrations in acute onset non-rheumatic atrial fibrillation. Heart. 90, 1162–1166 (2004). https://doi.org/10.1136/HRT.2003.024521

    Article  Google Scholar 

  9. Akar, J.G., Jeske, W., Wilber, D.J.: Acute onset human atrial fibrillation is associated with local cardiac platelet activation and endothelial dysfunction. J Am Coll Cardiol. 51, 1790–1793 (2008). https://doi.org/10.1016/J.JACC.2007.11.083

    Article  Google Scholar 

  10. Lane, D.A., Lip, G.Y.H.: Use of the CHA2DS2-VASc and HAS-BLED Scores to aid decision making for thromboprophylaxis in nonvalvular atrial fibrillation. Circulation. 126, 860–865 (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.060061

    Article  Google Scholar 

  11. Qureshi, A., Lip, G., Nordsletten, D.A., Williams, S.E., Aslanidi, O., de Vecchi, A.: Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke. Front Cardiovasc Med. 9, 3872. https://doi.org/10.3389/FCVM.2022.1074562

  12. Dillon-Murphy, D., et al.: Modeling left atrial flow, energy, blood heating distribution in response to catheter ablation therapy. Front Physiol. 9, 1757 (2018). https://doi.org/10.3389/fphys.2018.01757

    Article  Google Scholar 

  13. Masci, A., et al.: A Patient-Specific Computational Fluid Dynamics Model of the Left Atrium in Atrial Fibrillation: Development and Initial Evaluation 392–400 (2017). https://doi.org/10.1007/978-3-319-59448-4_37

  14. Mill, J., et al.: Patient-specific flow simulation analysis to predict device-related thrombosis in left atrial appendage occluders (2021). https://doi.org/10.24875/RECICE.M21000224

  15. Morales, X., et al.: Deep Learning Surrogate of Computational Fluid Dynamics for Thrombus Formation Risk in the Left Atrial Appendage. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). (2020). https://doi.org/10.1007/978-3-030-39074-7_17

    Article  Google Scholar 

  16. Lee, J., et al.: Multiphysics computational modeling in CHeart. SIAM Journal on Scientific Computing. 38, C150–C178 (2016). https://doi.org/10.1137/15M1014097

    Article  MATH  Google Scholar 

  17. Chubb, H., et al.: The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. Journal of Cardiovascular Magnetic Resonance 20, 21 (2018). https://doi.org/10.1186/s12968-018-0438-y

    Article  Google Scholar 

  18. Kerfoot, E., et al.: Eidolon: Visualization and Computational Framework for Multi-Modal Biomedical Data Analysis.

    Google Scholar 

  19. di Achille, P., Tellides, G., Figueroa, C.A., Humphrey, J.D.: A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, 20140163 (2014). https://doi.org/10.1098/rspa.2014.0163

  20. Ataullakhanov, F.I., Zarnitsyna, V.I., Kondratovich, A.Y., Lobanova, E.S., Sarbash, V.I.: A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation. Physics-Uspekhi. 45, 619–636 (2002). https://doi.org/10.1070/PU2002v045n06ABEH001090

    Article  Google Scholar 

  21. Lobanov, A.I., Nikolaev, A.V., Starozhilova, T.K.: Mathematical model of fibrin polymerization. Math. Model. Nat. Phenom. 6, 55–69 (2011). https://doi.org/10.1051/mmnp/20116705

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qureshi, A. et al. (2023). Modelling Blood Flow and Biochemical Reactions Underlying Thrombogenesis in Atrial Fibrillation. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics