Skip to main content

pyheart-lib: A Python Library for LS-DYNA Multi-physics Heart Simulations

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Phyisics-based computer simulations of the heart have huge potential in the medical device industry and clinical practice, for instance to accelerate and improve device designs, assist clinical decision making, or guide treatment planning. For heart simulations the importance of modeling choices with respect to electrophysiology, the structural behavior of the cardiac tissue, the dynamics of blood flow, and their respective coupling strongly depend on the application of interest. LS-DYNA is a finite element solution that offers the necessary multi-physics capabilities and features for heart modeling. Nevertheless, setting up these models and obtaining physiological results is still highly manual and can be cumbersome. Therefore, in this paper we propose a python-based high-level interface to LS-DYNA, that will be free-to-use and dedicated to heart modeling. We introduce the relevant heart modeling features that are available and introduce the modular python library to set up and drive these simulations. Consequently, two example models are presented: a full heart model of electrophysiology and a bi-ventricular model of cardiac mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baillargeon, B., Rebelo, N., Fox, D.D., Taylor, R.L., Kuhl, E.: The living heart project: a robust and integrative simulator for human heart function. Eur. J. Mech. - A/Solids 48, 38–47 (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayer, J.D., Blake, R.C., Plank, G., Trayanova, N.A.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012). https://doi.org/10.1007/s10439-012-0593-5

    Article  Google Scholar 

  3. Bovendeerd, P., Arts, T., Huyghe, J., van Campen, D., Reneman, R.: Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J. Biomech. 25(10), 1129–1140 (1992). https://doi.org/10.1016/0021-9290(92)90069-d

    Article  Google Scholar 

  4. Cestariolo, L., Luraghi, G., L’Eplattenier, P., Matas, J.F.R.: A finite element model of the embryonic zebrafish heart electrophysiology. Comput. Methods Programs Biomed. 229, 107281 (2023). https://doi.org/10.1016/j.cmpb.2022.107281

    Article  Google Scholar 

  5. Costabal, F.S., Hurtado, D.E., Kuhl, E.: Generating purkinje networks in the human heart. J. Biomech. 49(12), 2455–2465 (2016). https://doi.org/10.1016/j.jbiomech.2015.12.025

    Article  Google Scholar 

  6. Durrer, D., Dam, R.T.V., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970). https://doi.org/10.1161/01.cir.41.6.899

    Article  Google Scholar 

  7. Guccione, J.M., Waldman, L.K., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: part II–cylindrical models of the systolic left ventricle. J. Biomech. Eng. 115(1), 82–90 (1993). https://doi.org/10.1115/1.2895474

    Article  Google Scholar 

  8. Göktepe, S., Acharya, S.N.S., Wong, J., Kuhl, E.: Computational modeling of passive myocardium. Int. J. Numer. Methods Biomed. Eng. 27(1), 1–12 (2010). https://doi.org/10.1002/cnm.1402

    Article  MathSciNet  MATH  Google Scholar 

  9. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1902), 3445–3475 (2009). https://doi.org/10.1098/rsta.2009.0091

    Article  MathSciNet  MATH  Google Scholar 

  10. Hunter, P., McCulloch, A., ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998). https://doi.org/10.1016/s0079-6107(98)00013-3

    Article  Google Scholar 

  11. Klotz, S., et al.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol.-Heart Circulatory Physiol. 291(1), H403–H412 (2006). https://doi.org/10.1152/ajpheart.01240.2005

    Article  Google Scholar 

  12. Krishnamurthy, A., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013). https://doi.org/10.1016/j.jcp.2012.09.015

    Article  Google Scholar 

  13. Land, S., et al.: Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proc. R. Soc. A: Math., Phys. Eng. Sci. 471(2184), 20150641 (2015). https://doi.org/10.1098/rspa.2015.0641

    Article  Google Scholar 

  14. Livermore Software Technology Corporation: LS-DYNA Keyword User’s Manual. Volume I. II, II (2023)

    Google Scholar 

  15. Luraghi, G., et al.: On the modeling of patient-specific transcatheter aortic valve replacement: a fluid–structure interaction approach. Cardiovasc. Eng. Technol. 10(3), 437–455 (2019). https://doi.org/10.1007/s13239-019-00427-0

    Article  Google Scholar 

  16. L’Eplattenier, P., Çaldichoury, I., Pin, F.D., Paz, R., Nagy, A., Benson, D.: Cardiac electrophysiology using LS-DYNA. In: 16th International LS-DYNA Users Conference (2020)

    Google Scholar 

  17. Martins, J.A.C., Pato, M.P.M., Pires, E.B.: A finite element model of skeletal muscles. Virtual Phys. Prototyp. 1(3), 159–170 (2006). https://doi.org/10.1080/17452750601040626

    Article  Google Scholar 

  18. Pathmanathan, P., et al.: A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 102(2–3), 136–155 (2010). https://doi.org/10.1016/j.pbiomolbio.2010.05.006

    Article  Google Scholar 

  19. Peirlinck, M., et al.: Precision medicine in human heart modeling. Biomech. Model. Mechanobiol. 20(3), 803–831 (2021). https://doi.org/10.1007/s10237-021-01421-z

    Article  Google Scholar 

  20. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2435 (2006). https://doi.org/10.1109/tbme.2006.880875

    Article  Google Scholar 

  21. Quarteroni, A., Lassila, T., Rossi, S., Ruiz-Baier, R.: Integrated heart–coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314, 345–407 (2017). https://doi.org/10.1016/j.cma.2016.05.031

    Article  MathSciNet  MATH  Google Scholar 

  22. Rodero, C., et al.: Virtual cohort of adult healthy four-chamber heart meshes from CT images (2021). https://doi.org/10.5281/ZENODO.4590294

  23. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware, Clifton Park (2006)

    Google Scholar 

  24. Strocchi, M., et al.: A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations (2020). https://doi.org/10.5281/ZENODO.3890034

  25. Strocchi, M., et al.: Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium. J. Biomech. 101, 109645 (2020). https://doi.org/10.1016/j.jbiomech.2020.109645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim El Houari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoeijmakers, M. et al. (2023). pyheart-lib: A Python Library for LS-DYNA Multi-physics Heart Simulations. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics