Skip to main content

Uncertainty to Improve the Automatic Measurement of Left Ventricular Ejection Fraction in 2D Echocardiography Using CNN-Based Segmentation

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

The echocardiographic measurement of the left ventricular ejection fraction (LVEF) is the accepted clinical way to assess the cardiac function of a patient. For this measurement, a physician needs to identify the end-systole and end-diastole, segment the left ventricle in those frames, obtain the volume from the masks, and compute the LVEF. Naive implementations of convolutional neural network (CNN) based segmentation algorithms to perform this measurement might encounter problems identifying the end-systole and end-diastole if there is a single poorly segmented frame in the whole echocardiogram, which would ruin the measurement of LVEF and require manual review by a human operator. In this research article, we present how to use different uncertainty metrics to identify poorly segmented frames and quantify how these techniques improve the concordance between algorithm and human operator measurements in a population-based cohort of echocardiographic examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Baron, T., Berglund, L., Hedin, E.M., Flachskampf, F.A.: Test-retest reliability of new and conventional echocardiographic parameters of left ventricular systolic function. Clin. Res. Cardiol. 108(4), 355–365 (2019)

    Article  Google Scholar 

  3. Dahal, L., Kafle, A., Khanal, B.: Uncertainty estimation in deep 2d echocardiography segmentation. arXiv preprint arXiv:2005.09349 (2020)

  4. Fernandez, M.A.G.: Is it possible to train non-cardiologists to perform echocardiography? (2014)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  6. Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., Soudry, D.: Augment your batch: Improving generalization through instance repetition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8129–8138 (2020)

    Google Scholar 

  7. Iqbal, H.: Harisiqbal88/plotneuralnet v1.0.0 (2018). https://doi.org/10.5281/zenodo.2526396

  8. Jafari, M.H., Van Woudenberg, N., Luong, C., Abolmaesumi, P., Tsang, T.: Deep bayesian image segmentation for a more robust ejection fraction estimation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1264–1268. IEEE (2021)

    Google Scholar 

  9. Judge, T., Bernard, O., Porumb, M., Chartsias, A., Beqiri, A., Jodoin, P.M.: CRISPL -reliable uncertainty estimation for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 492–502. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16452-1_47

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2d echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  12. Melero-Alegria, J.I., et al.: Salmanticor study. rationale and design of a population-based study to identify structural heart disease abnormalities: a spatial and machine learning analysis. BMJ Open 9(2), e024605 (2019)

    Google Scholar 

  13. Ouyang, D.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Smistad, E., et al.: Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 67(12), 2595–2604 (2020)

    Article  Google Scholar 

  16. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  17. Toussaint, W., et al.: Design considerations for high impact, automated echocardiogram analysis. arXiv preprint arXiv:2006.06292 (2020)

  18. Virtanen, P., et al.: SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

Download references

Funding

This research was partially funded by competitive national grants (PI14/00695, PI17/00145, PI21/00369) and by the CIBERCV (CB16/11/00374) from the Institute of Health Carlos III, Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sánchez-Puente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez-Puente, A. et al. (2023). Uncertainty to Improve the Automatic Measurement of Left Ventricular Ejection Fraction in 2D Echocardiography Using CNN-Based Segmentation. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics