Skip to main content

Ventricular Helix Angle Trends and Long-Range Connectivity

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Porcine hearts (N = 14) underwent ex vivo diffusion tensor imaging (DTI) at 3T. DTI analysis showed regional differences in helix angle (HA) range. The HA range in the posterior free wall was significantly greater than that of the anterior free wall (p = 0.02), the lateral free wall (p < 0.001) and the septum (p = 0.008). The best-fit transmural HA function also varied by region, with eight regions best described by an arctan function, seven by an arcsine function, and a single region by a linear function. Tractography analysis was performed, and the length that the tracts spanned within the epicardial, midwall, and endocardial segments was measured. A high number of tracts span the epicardial and mid-wall thirds, with fewer tracts spanning the mid-wall and endocardial thirds. Connectivity analysis of the number of tracts connecting different ventricular regions showed a high prevalence of oblique tracts that may be critical for long-range connectivity.

A. J. Wilson and Q. J. Han—The first two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cork, T.E., Perotti, L.E., Verzhbinsky, I.A., Loecher, M., Ennis, D.B.: High-resolution Ex Vivo microstructural MRI after restoring ventricular geometry via 3D printing. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 177–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_20

    Chapter  Google Scholar 

  2. Dejea, H., et al.: Comprehensive analysis of animal models of cardiovascular disease using multiscale X-Ray phase contrast tomography. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  3. Giannakidis, A., Gullberg, G.T.: Transmural remodeling of cardiac microstructure in aged spontaneously hypertensive rats by diffusion tensor MRI. Front. Physiol. 11, 1–12 (2020)

    Article  Google Scholar 

  4. Hasaballa, A.I., et al.: Microstructurally motivated constitutive modeling of heart failure mechanics. Biophys. J. 117(12), 2273–2286 (2019)

    Article  Google Scholar 

  5. LeGrice, I., Takayama, Y., Covell, J.: Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77(1), 182–193 (1995)

    Article  Google Scholar 

  6. Lunkenheimer, P.P., et al.: Three-dimensional architecture of the left ventricular myocardium. Anat. Rec. Part A: Discoveries Mol. Cellular Evol. Biol.: Official Publ. Am. Assoc. Anatomists 288(6), 565–578 (2006)

    Google Scholar 

  7. Magat, J., et al.: 3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging. Magn. Reson. Mater. Phys. Biol. Med. 1–15 (2021)

    Google Scholar 

  8. Moulin, K., Croisille, P., Viallon, M., Verzhbinsky, I.A., Perotti, L.E., Ennis, D.B.: Myofiber strain in healthy humans using DENSE and cDTI. Magn. Reson. Med. 86(1), 277–292 (2021)

    Article  Google Scholar 

  9. Moulin, K., Verzhbinsky, I.A., Maforo, N.G., Perotti, L.E., Ennis, D.B.: Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. PloS One 15(11), e0241996 (2020)

    Google Scholar 

  10. Pope, A.J., Sands, G.B., Smaill, B.H., LeGrice, I.J.: Three-dimensional transmural organization of perimysial collagen in the heart. Am. J. Physiol. Heart Circulatory Physiol. 295, 1243–1252 (2008)

    Article  Google Scholar 

  11. Sallin, E.A.: Fiber orientation and ejection fraction in the human left ventricle. Biophys. J . 9(7), 954–964 (1969)

    Article  Google Scholar 

  12. Shattuck, D.W., Leahy, R.M.: Brainsuite: an automated cortical surface identification tool. Med. Image Anal. 6, 129–142 (2002)

    Article  Google Scholar 

  13. Sosnovik, D.E., Wang, R., Dai, G., Reese, T.G., Wedeen, V.J.: Diffusion MR tractography of the heart. J. Cardiovasc. Magn. Reson. 11(1), 1–15 (2009)

    Article  Google Scholar 

  14. Sosnovik, D.E., et al.: Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circ. Cardiovasc. Imaging 2(3), 206–212 (2009)

    Article  Google Scholar 

  15. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(8), 339–348 (1969)

    Article  Google Scholar 

  16. Teh, I., et al.: Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging. J. Cardiovasc. Magn. Reson. 19, 1–14 (2017)

    Article  Google Scholar 

  17. Wilson, A., et al.: Myocardial laminar organization is retained in angiotensin-converting enzyme inhibitor treated SHRs. Exp. Mech. 61, 31–40 (2021)

    Article  Google Scholar 

  18. Wilson, A.J., Sands, G.B., Ennis, D.B.: Analysis of location-dependent cardiomyocyte branching. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 189–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_19

    Chapter  Google Scholar 

  19. Wilson, A.J., Sands, G.B., LeGrice, I.J., Young, A.A., Ennis, D.B.: Myocardial mesostructure and mesofunction. Am. J. Physiol.-Heart Circulatory Physiol. 323(2), H257–H275 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported, in part, by American Heart Association Grant 19IPLOI34760294 (to D.B.E.) and National Heart, Lung, and Blood Institute Grants R01-HL131823 (to D.B.E.), R01-HL152256 (to D.B.E.), and K25-HL135408 (to L.E.P.) and by the National Science Foundation under Grants 2205043 (to L.E.P.) and 2205103 (to D.B.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilson, A.J., Han, Q.J., Perotti, L.E., Ennis, D.B. (2023). Ventricular Helix Angle Trends and Long-Range Connectivity. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics