Skip to main content

On the Possibility of Estimating Myocardial Fiber Architecture from Cardiac Strains

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avazmohammadi, R., et al.: A computational cardiac model for the adaptation to pulmonary arterial hypertension in the rat. Ann. Biomed. Eng. 47(1), 138–153 (2018). https://doi.org/10.1007/s10439-018-02130-y

    Article  Google Scholar 

  2. Avazmohammadi, R., Hill, M., Simon, M., Sacks, M.: Transmural remodeling of right ventricular myocardium in response to pulmonary arterial hypertension. APL Bioengineering 1(1), 016105 (2017)

    Article  Google Scholar 

  3. Barbarotta, L., Bovendeerd, P.H.M.: A computational approach on sensitivity of left ventricular wall strains to fiber orientation. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 296–304. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_29

    Chapter  Google Scholar 

  4. Barbarotta, L., Bovendeerd, P.H.M.: Parameter estimation in a rule-based fiber orientation model from end systolic strains using the reduced order unscented Kalman filter. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 340–350. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_33

    Chapter  Google Scholar 

  5. Buckberg, G., Hoffman, J.I., Mahajan, A., Saleh, S., Coghlan, C.: Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118(24), 2571–2587 (2008)

    Article  Google Scholar 

  6. Ferreira, P.F., et al.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16(1), 1–16 (2014)

    Article  Google Scholar 

  7. Geerts, L., Kerckhoffs, R., Bovendeerd, P., Arts, T.: Towards patient specific models of cardiac mechanics: a sensitivity study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 81–90. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44883-7_9

    Chapter  Google Scholar 

  8. Keshavarzian, M., et al.: An image registration framework to estimate 3D myocardial strains from cine cardiac MRI in mice. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 273–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_27

    Chapter  Google Scholar 

  9. Mendiola, E., et al.: Contractile adaptation of the left ventricle post-myocardial infarction: predictions by rodent-specific computational modeling. Ann. Biomed. Eng. 16(2), 721–729 (2022)

    Google Scholar 

  10. Mendiola, E.A., et al.: Right ventricular architectural remodeling and functional adaptation in pulmonary hypertension. Circulation: Heart Failure 16(2), e009768 (2023)

    Google Scholar 

  11. Pluijmert, M., Delhaas, T., de la Parra, A.F., Kroon, W., Prinzen, F.W., Bovendeerd, P.H.: Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation. Biomech. Model. Mechanobiol. 16(2), 721–729 (2017)

    Article  Google Scholar 

  12. Scott, A.D., et al.: An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3 T diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. J. Cardiovasc. Magn. Reson. 20(1), 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  13. Stoeck, C.T., Von Deuster, C., Genet, M., Atkinson, D., Kozerke, S.: Second-order motion-compensated spin echo diffusion tensor imaging of the human heart. Magn. Reson. Med. 75(4), 1669–1676 (2016)

    Article  Google Scholar 

  14. Walker, J.C., et al.: Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep. J. Thorac. Cardiovasc. Surg. 129(2), 382–390 (2005)

    Article  Google Scholar 

  15. Welsh, C.L., DiBella, E.V., Hsu, E.W.: Higher-order motion-compensation for in vivo cardiac diffusion tensor imaging in rats. IEEE Trans. Med. Imaging 34(9), 1843–1853 (2015)

    Article  Google Scholar 

  16. Zhang, X., Haynes, P., Campbell, K.S., Wenk, J.F.: Numerical evaluation of myofiber orientation and transmural contractile strength on left ventricular function. J. Biomech. Eng. 137(4), 044502 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH Grant No. R00HL138288 to R.A..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Avazmohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Usman, M. et al. (2023). On the Possibility of Estimating Myocardial Fiber Architecture from Cardiac Strains. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics