Skip to main content

Node-Weighted Centrality Ranking for Unsupervised Long Document Summarization

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2023)

Abstract

Supervised methods have demonstrated superior performance to unsupervised methods in text summarization. However, supervised methods heavily rely on human-generated summaries, which can be costly and difficult to obtain in large quantities. They also face challenges in summarizing long documents due to input length restrictions. Graph-based methods are frequently employed in unsupervised text summarization owing to their capacity to examine interrelationships between. However, these methods usually depend on unique node weights, resulting in limited mapping capabilities and weak performance on long documents. To address these difficulties, this study proposes an unsupervised method that employs a graph model with augmented node weights with a novel centrality ranking algorithm. Comprehensive experiments on standard datasets demonstrate the effectiveness of the proposed method, which outperforms both unsupervised and supervised techniques when evaluated using the ROUGE metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pypi.org/project/sumy/.

  2. 2.

    https://huggingface.co/sentence-transformers/roberta-base-nli-stsb-mean-tokens.

  3. 3.

    https://pypi.org/project/py-rouge/.

References

  1. Abuobieda, A., Salim, N., Albaham, A.T., Osman, A.H., Kumar, Y.J.: Text summarization features selection method using pseudo genetic-based model. In: 2012 International Conference on Information Retrieval & Knowledge Management, pp. 193–197. IEEE (2012)

    Google Scholar 

  2. Babar, S., Thorat, S.: Improving text summarization using fuzzy logic & latent semantic analysis. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 1(4), l70-177 (2014)

    Google Scholar 

  3. Bird, S., Loper, E.: NLTK: the natural language toolkit. In: Proceedings of the ACL Interactive Poster and Demonstration Sessions, pp. 214–217. Association for Computational Linguistics, Barcelona, Spain, July 2004. https://aclanthology.org/P04-3031

  4. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972). https://doi.org/10.1080/0022250X.1972.9989806

  5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1), 107–117 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X, https://www.sciencedirect.com/science/article/pii/S016975529800110X

  6. Cagliero, L., Garza, P., Baralis, E.: Elsa: a multilingual document summarization algorithm based on frequent itemsets and latent semantic analysis. ACM Trans. Inf. Syst. (TOIS) 37(2), 1–33 (2019)

    Article  Google Scholar 

  7. Cohan, A., et al.: A discourse-aware attention model for abstractive summarization of long documents. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 615–621. Association for Computational Linguistics, New Orleans, Louisiana, June 2018. https://doi.org/10.18653/v1/N18-2097, https://aclanthology.org/N18-2097

  8. Dong, Y., Mircea, A., Cheung, J.C.K.: Discourse-aware unsupervised summarization for long scientific documents. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1089–1102. Association for Computational Linguistics, Online, April 2021. https://doi.org/10.18653/v1/2021.eacl-main.93, https://aclanthology.org/2021.eacl-main.93

  9. Dumais, S.T., et al.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)

    Article  Google Scholar 

  10. Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004). https://doi.org/10.1613/jair.1523

  11. Fattah, M.A.: A hybrid machine learning model for multi-document summarization. Appl. Intell. 40(4), 592–600 (2013). https://doi.org/10.1007/s10489-013-0490-0

    Article  Google Scholar 

  12. Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent semantic analysis. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 19–25 (2001)

    Google Scholar 

  13. Gupta, H., Patel, M.: Method of text summarization using LSA and sentence based topic modelling with Bert. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 511–517. IEEE (2021)

    Google Scholar 

  14. John, A., Premjith, P., Wilscy, M.: Extractive multi-document summarization using population-based multicriteria optimization. Expert Syst. Appl. 86, 385–397 (2017)

    Article  Google Scholar 

  15. Liang, X., Wu, S., Li, M., Li, Z.: Improving unsupervised extractive summarization with facet-aware modeling. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1685–1697. Association for Computational Linguistics, Stroudsburg, PA, USA (2021). https://doi.org/10.18653/v1/2021.findings-acl.147

  16. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81. Association for Computational Linguistics, Barcelona, Spain, July 2004. https://aclanthology.org/W04-1013

  17. Liu, J., Hughes, D.J.D., Yang, Y.: Unsupervised extractive text summarization with distance-augmented sentence graphs. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2313–2317. ACM, New York, NY, USA, July 2021. https://doi.org/10.1145/3404835.3463111

  18. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3730–3740. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1387, https://aclanthology.org/D19-1387

  19. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958). https://doi.org/10.1147/rd.22.0159

    Article  MathSciNet  Google Scholar 

  20. Mendoza, M., Bonilla, S., Noguera, C., Cobos, C., León, E.: Extractive single-document summarization based on genetic operators and guided local search. Expert Syst. Appl. 41(9), 4158–4169 (2014)

    Article  Google Scholar 

  21. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics, Barcelona, Spain, July 2004. https://aclanthology.org/W04-3252

  22. Nallapati, R., Zhai, F., Zhou, B.: Summarunner: a recurrent neural network based sequence model for extractive summarization of documents. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  23. Narayan, S., Cohen, S.B., Lapata, M.: Ranking sentences for extractive summarization with reinforcement learning. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers), pp. 1747–1759. Association for Computational Linguistics, New Orleans, Louisiana, June 2018. https://doi.org/10.18653/v1/N18-1158, https://aclanthology.org/N18-1158

  24. Nenkova, A., McKeown, K., et al.: Automatic summarization. Found. Trends® Inf. Retr. 5(2–3), 103–233 (2011)

    Google Scholar 

  25. Ozsoy, M., Cicekli, I., Alpaslan, F.: Text summarization of Turkish texts using latent semantic analysis. In: Proceedings of the 23rd international conference on computational linguistics (Coling 2010), pp. 869–876 (2010)

    Google Scholar 

  26. Pilault, J., Li, R., Subramanian, S., Pal, C.: On extractive and abstractive neural document summarization with transformer language models. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9308–9319. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.748, https://aclanthology.org/2020.emnlp-main.748

  27. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1410, https://aclanthology.org/D19-1410

  28. Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22(4), 357–365 (2000). https://doi.org/10.1016/S0378-8733(00)00031-9, https://www.sciencedirect.com/science/article/pii/S0378873300000319

  29. Salton, G., Allan, J., Buckley, C., Singhal, A.: Automatic analysis, theme generation, and summarization of machine-readable texts. Science 264(5164), 1421–1426 (1994)

    Article  Google Scholar 

  30. Sandhaus, E.: The New York Times Annotated Corpus LDC2008T19. Linguistic Data Consortium, Philadelphia (2008). https://catalog.ldc.upenn.edu/LDC2008T19

  31. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083. Association for Computational Linguistics, Vancouver, Canada, July 2017. https://doi.org/10.18653/v1/P17-1099, https://www.aclweb.org/anthology/P17-1099

  32. Shirwandkar, N.S., Kulkarni, S.: Extractive text summarization using deep learning. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–5 (2018). https://doi.org/10.1109/ICCUBEA.2018.8697465

  33. Singh, A., Singh, R.R., Iyengar, S.R.S.: Node-weighted centrality: a new way of centrality hybridization. Comput. Soc. Netw. 7(1), 1–33 (2020). https://doi.org/10.1186/s40649-020-00081-w

    Article  Google Scholar 

  34. Steinberger, J., Jezek, K.: Using latent semantic analysis in text summarization and summary evaluation. Proc. ISIM 4, 93–100 (2004)

    Google Scholar 

  35. Suanmali, L., Binwahlan, M.S., Salim, N.: Sentence features fusion for text summarization using fuzzy logic. In: 2009 Ninth International Conference on Hybrid Intelligent Systems, vol. 1, pp. 142–146 (2009). https://doi.org/10.1109/HIS.2009.36

  36. Xiao, W., Carenini, G.: Extractive summarization of long documents by combining global and local context. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3011–3021. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1298, https://aclanthology.org/D19-1298

  37. Xu, J., Durrett, G.: Neural extractive text summarization with syntactic compression. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3292–3303. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1324, https://aclanthology.org/D19-1324

  38. Zheng, H., Lapata, M.: Sentence centrality revisited for unsupervised summarization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6236–6247. Association for Computational Linguistics, Stroudsburg, PA, USA (2019). https://doi.org/10.18653/v1/P19-1628

Download references

Acknowledgments

The first author would like to acknowledge the Ministry of National Education of Turkey for the financial support of her research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuba Gokhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gokhan, T., Smith, P., Lee, M. (2023). Node-Weighted Centrality Ranking for Unsupervised Long Document Summarization. In: Métais, E., Meziane, F., Sugumaran, V., Manning, W., Reiff-Marganiec, S. (eds) Natural Language Processing and Information Systems. NLDB 2023. Lecture Notes in Computer Science, vol 13913. Springer, Cham. https://doi.org/10.1007/978-3-031-35320-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35320-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35319-2

  • Online ISBN: 978-3-031-35320-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics