Skip to main content

GRAM: Grammar-Based Refined-Label Representing Mechanism in the Hierarchical Semantic Parsing Task

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2023)

Abstract

In this study, we proposed an efficient method to improve the performance of the hierarchical semantic parsing task by strengthening the meaning representation of the label candidate set via inductive grammar. In particular, grammar was first synthesized from the logical representations of training annotated data. Then, the model utilizes it as additional structured information for all expression label predictions. The grammar was also used to prevent unpromising directions in the semantic parsing process dynamically. The experimental results on the three well-known semantic parsing datasets, TOP, TOPv2 (low-resource settings), and ATIS, showed that our proposed method work effectiveness, which achieved new state-of-the-art (SOTA) results on TOP and TOPv2 datasets, and competitive results on the ATIS dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our source code and the converted version of the ATIS dataset are publicly available at https://github.com/truongdo619/GRAM.

  2. 2.

    The values resulting in the best performance are bold.

References

  1. Aghajanyan, A., et al.: Conversational semantic parsing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5026ā€“5035. Association for Computational Linguistics, Online, November 2020. https://aclanthology.org/2020.emnlp-main.408

  2. Baranowski, A., Hochgeschwender, N.: Grammar-constrained neural semantic parsing with LR parsers. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1275ā€“1279. Association for Computational Linguistics, Online, August 2021. https://aclanthology.org/2021.findings-acl.108

  3. Castellucci, G., Bellomaria, V., Favalli, A., Romagnoli, R.: Multi-lingual intent detection and slot filling in a joint bert-based model. arXiv preprint arXiv:1907.02884 (2019). https://arxiv.org/abs/1907.02884

  4. Chen, Q., Zhuo, Z., Wang, W.: Bert for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019). https://arxiv.org/abs/1902.10909

  5. Chen, X., Ghoshal, A., Mehdad, Y., Zettlemoyer, L., Gupta, S.: Low-resource domain adaptation for compositional task-oriented semantic parsing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5090ā€“5100. Association for Computational Linguistics, Online, November 2020. https://aclanthology.org/2020.emnlp-main.413

  6. Cui, L., Zhang, Y.: Hierarchically-refined label attention network for sequence labeling. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4115ā€“4128. Association for Computational Linguistics, Hong Kong, China, November 2019. https://aclanthology.org/D19-1422

  7. Dong, L., Lapata, M.: Language to logical form with neural attention. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 33ā€“43. Association for Computational Linguistics, Berlin, Germany, August 2016. https://aclanthology.org/P16-1004

  8. Einolghozati, A., et al.: Improving semantic parsing for task oriented dialog. arXiv preprint arXiv:1902.06000 (2019). https://doi.org/10.48550/ARXIV.1902.06000

  9. Gupta, S., Shah, R., Mohit, M., Kumar, A., Lewis, M.: Semantic parsing for task oriented dialog using hierarchical representations. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2787ā€“2792. Association for Computational Linguistics, Brussels, Belgium (Oct-Nov 2018). https://aclanthology.org/D18-1300

  10. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The ATIS spoken language systems pilot corpus. In: Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, 24ā€“27 June 1990. https://aclanthology.org/H90-1021

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). https://doi.org/10.48550/ARXIV.1412.6980

  12. Knuth, D.E.: On the translation of languages from left to right. Inf. Control 8(6), 607ā€“639 (1965). https://www.sciencedirect.com/science/article/pii/S0019995865904262

  13. Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019). https://doi.org/10.48550/arXiv.1907.11692

  14. Liu, Y., Zhao, J., Hu, J., Li, R., Jin, Q.: DialogueEIN: emotion interaction network for dialogue affective analysis. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 684ā€“693. International Committee on Computational Linguistics, Gyeongju, Republic of Korea, October 2022. https://aclanthology.org/2022.coling-1.57

  15. Mansimov, E., Zhang, Y.: Semantic parsing in task-oriented dialog with recursive insertion-based encoder. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11067ā€“11075 (2022). https://doi.org/10.1609/aaai.v36i10.21355

  16. Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In: Proceedings of the Interspeech 2013, pp. 3771ā€“3775 (2013). https://doi.org/10.21437/Interspeech.2013-596

  17. Phuong, N.M., Le, T., Minh, N.L.: CAE: mechanism to diminish the class imbalanced in SLU slot filling task. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., KrĆ³tkiewicz, M. (eds.) Advances in Computational Collective Intelligence. ICCCI 2022. CCIS, vol. 1653, pp. 150ā€“163. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16210-7_12

  18. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-propagation framework with token-level intent detection for spoken language understanding. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2078ā€“2087. Association for Computational Linguistics, Hong Kong, China, November 2019. https://aclanthology.org/D19-1214

  19. Rongali, S., Soldaini, L., Monti, E., Hamza, W.: Donā€™t parse, generate! a sequence to sequence architecture for task-oriented semantic parsing. In: Proceedings of The Web Conference 2020, pp. 2962ā€“2968 (2020). https://doi.org/10.1145/3366423.3380064

  20. Vaswani, A., et al.: Attention is all you need, p. 30 (2017)

    Google Scholar 

  21. Xiao, C., Dymetman, M., Gardent, C.: Sequence-based structured prediction for semantic parsing. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1341ā€“1350. Association for Computational Linguistics, Berlin, Germany, August 2016. https://aclanthology.org/P16-1127

  22. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 440ā€“450. Association for Computational Linguistics, Vancouver, Canada, July 2017. https://aclanthology.org/P17-1041

  23. Zhang, Z., Huang, M., Zhao, Z., Ji, F., Chen, H., Zhu, X.: Memory-augmented dialogue management for task-oriented dialogue systems. ACM Trans. Inf. Syst. (TOIS) 37(3), 1ā€“30 (2019). https://dl.acm.org/doi/abs/10.1145/3317612

  24. Zhang, Z., Takanobu, R., Zhu, Q., Huang, M., Zhu, X.: Recent advances and challenges in task-oriented dialog systems. Sci. China Technol. Sci. 63(10), 2011ā€“2027 (2020). https://doi.org/10.1007/s11432-016-0037-0

  25. Zhu, Q., Khan, H., Soltan, S., Rawls, S., Hamza, W.: Donā€™t parse, insert: multilingual semantic parsing with insertion based decoding. In: Proceedings of the 24th Conference on Computational Natural Language Learning, pp. 496ā€“506. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.conll-1.40

Download references

Acknowledgments

This work is supported by AOARD grant FA23862214039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Truong Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Do, DT., Nguyen, MP., Nguyen, LM. (2023). GRAM: Grammar-Based Refined-Label Representing Mechanism in the Hierarchical Semantic Parsing Task. In: MĆ©tais, E., Meziane, F., Sugumaran, V., Manning, W., Reiff-Marganiec, S. (eds) Natural Language Processing and Information Systems. NLDB 2023. Lecture Notes in Computer Science, vol 13913. Springer, Cham. https://doi.org/10.1007/978-3-031-35320-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35320-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35319-2

  • Online ISBN: 978-3-031-35320-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics