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Abstract. Given the dynamic nature of toxic language use, automated
methods for detecting toxic spans are likely to encounter distributional
shift. To explore this phenomenon, we evaluate three approaches for de-
tecting toxic spans under cross-domain conditions: lexicon-based, ratio-
nale extraction, and fine-tuned language models. Our findings indicate
that a simple method using off-the-shelf lexicons performs best in the
cross-domain setup. The cross-domain error analysis suggests that (1)
rationale extraction methods are prone to false negatives, while (2) lan-
guage models, despite performing best for the in-domain case, recall fewer
explicitly toxic words than lexicons and are prone to certain types of
false positives. Our code is publicly available at: https://github.com/
sfschouten/toxic-cross-domain.

1 Introduction

The rise of social media over the past decade and a half and the accompanying
increase in exposure to toxic language has motivated much research into the
automated detection of such language [6,13]. Online toxic language use is highly
dynamic and often specific to particular communities. To deal with shifts in use
of toxic language over time and to handle particular communities being under-
represented in the training data, methods for toxic language detection should
generalize outside the original data distribution. Generalization for message-level
toxic language detection was previously investigated by evaluating methods in a
cross-domain setup [22]. This has provided valuable insights into how well meth-
ods trained on data from one domain perform on data from other domains. In
this work, we investigate the detection of toxic spans [14] in a cross-domain setup.
In contrast to detecting overall toxicity, detecting spans aids the explainability of
such systems and supports moderators in deciding on appropriate interventions
sensitive to the dynamics within specific communities.

We address the following research question: how well do current methods for
toxic spans detection perform in a cross-domain setting? Our first contribution
answers this question quantitatively: we evaluate three kinds of methods using
the same metrics on the same datasets, reporting in-domain and cross-domain
performance. Two experimental settings are considered: one where the overall
toxicity of the texts is considered known a priori, and another where a binary
toxicity classifier is used to infer the overall toxicity. The second contribution is

http://arxiv.org/abs/2306.09642v1
https://github.com/sfschouten/toxic-cross-domain
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an in-depth error analysis of the best performing methods where we investigate
and group incorrect predictions by type.

Our experimental results indicate that off-the-shelf lexicons of toxic language
outperform all other methods in a cross-domain setup, whether the binary toxic-
ity is assumed to be known or inferred. The error analysis suggests that language
models recall fewer explicitly toxic words than lexicons, and that they are prone
to particular types of false positives, such as incorrectly predicting the target of
the toxicity as a part of the toxic span.

2 Related Work

The task of toxic spans detection originated as a shared task at SemEval 2021
[14]. From the submissions, Pavlopoulos et al. [14] identified multiple interesting
approaches, three of which are described in the following paragraphs.

Lexicon-based approaches were widely used for message-level toxicity classifi-
cation. They are based on word-matching techniques, which do not take context
into account and miss censored or altered swear words. Despite this, and although
these methods are unsupervised, they still achieve fairly good results [6]. When
lexicons were used for toxic spans detection, several approaches constructed them
from (span-annotated) toxic data [14]. The lexicon-based approaches performed
well, with F1 scores of up to 64.98% attained by Zhu et al. [24]. Using a simple
statistical strategy, Zhu et al. built their lexicon from the shared task’s training
data (see subsection 3.2). We include their method for constructing lexicons in
our experiments and explore its effectiveness in a cross-domain setting.

Rationale extraction techniques use Explainable Artificial Intelligence (XAI)
methods to attribute a toxicity classifier’s decision to its inputs. Performing the
detection of toxic spans using XAI approaches assumes that the inputs that are
most important to a toxicity classifier also comprise the toxic spans we aim to
detect. A big benefit is that XAI approaches are generally unsupervised and do
not require much data [15]. Different XAI methods have been used, including
model-specific attention-based methods [15,18], but also model-agnostic methods
such as SHAP [15] and LIME [3]. We include the rationale extraction approach
in our experiments and evaluate rationales from four XAI methods under cross-
domain conditions.

Fine-tuned language models (LMs) formed the most popular category among
the shared task submissions [14]. Both the winner and the runner-up of the
shared task were based on ensembles of fine-tuned LMs [24,12]. Both submis-
sions used LMs fine-tuned for sequence labeling with the BIO (Beginning, Inside,
Outside) scheme, but Zhu et al. [24] also used an LM fine-tuned for span bound-
ary detection. Others participants, such as Chhablani et al. [4], used models
designed for extractive question answering. We also include a fine-tuned LM in
our experiments, investigating how well it performs in a cross-domain setting.

Recently, Ranasinghe & Zampieri [16] used the dataset from the SemEval
shared task to train a model with multi-lingual embeddings, evaluating on Dan-
ish and Greek datasets. They also evaluated their model off-domain for document-
level toxicity detection, whereas we evaluate cross-domain toxic span detection.
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Previous work has also investigated message-level toxicity classifiers under cross-
domain conditions, reporting significant drops in performance [13,10,8]. On the
message-level task pre-trained language models show better generalization and
ability to deal with domain shift. However, combining them with either external
resources such as lexicons [13] or with feature-engineered approaches [8] can im-
prove cross-domain prediction performance further. Pamungkas et al. [13] note
that previous works have investigated two types of domains: topic domains (e.g.,
racism vs. sexism), and platform domains (e.g., Twitter vs. Facebook). While
there may be differences in the topic distributions of our domains, our primary
focus is on toxic spans detection across platform domains.

To the best of our knowledge, we are the first to evaluate methods for the
detection of toxic spans under cross-domain conditions. By doing so, we shed
light on which approaches are best suited to handle shifts to out-of-domain data.

3 Methodology

This section describes in detail the methods for toxic spans detection we include
in our experiments, and how we evaluate them.

3.1 Evaluation

Our evaluation metric is based on that used in SemEval-2021 Task 5, where
Pavlopoulos et al. [14] define the following metric:

F+

1 (Y, T ) =











F1(Y, T ) |T | > 0

1 |T | = |Y| = 0

0 otherwise

(1)

Where Y, T correspond respectively to the predicted and ground truth sets of
toxic character offsets, and with:

F1(Y, T ) =
2 · P (Y, T ) · R(Y, T )

P (Y, T ) +R(Y, T )
, P (Y, T ) =

|Y ∩ T |

|Y|
, R(Y, T ) =

|Y ∩ T |

|T |
. (2)

They introduce this modified F1 score to handle texts that do not include span
annotations. We further use it to evaluate performance on non-toxic texts, which
we include in our experimentation (see section 4). We use the same metric, but
report the macro (instead of micro) average between toxic and non-toxic samples.
We do so because the chosen datasets differ in ratio of toxic to non-toxic (see
Table 1). By using macro averages we can compare results across datasets.

We investigate each method in two settings. The first setting assumes that
we know for each text if it is toxic or not, we call this setting ‘ToxicOracle’. This
demonstrates the ability of each method to identify toxic spans separately from
their ability to identify overall toxicity. The second setting ‘ToxicInferred’ makes
no such assumption. Instead, it includes a binary toxicity classifier to predict
whether texts are toxic before predicting the actual toxic spans. The errors made
in the first stage are propagated to the second stage by not predicting any spans
whenever the binary classifier predicts the text as non-toxic.
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3.2 Methods for Toxic Spans Detection

We perform toxic spans detection using three distinct approaches chosen based
on the results of SemEval 2021 task [14].

Lexicons. We use two varieties of lexicons: pre-existing lexicons of toxic lan-
guage and lexicons constructed from toxic spans detection training data. For
the latter we use the methodology proposed by Zhu et al. [24]: we quantify the
toxicity of a word as the frequency with which it occurs in a toxic span relative
to its overall frequency. The lexicon is constructed by only including words with
a toxicity score higher than a certain threshold.

Rationales. We extract rationales from a model (in our case, BERT [5]) trained
on binary toxicity classification (toxic vs. non-toxic) using various eXplainable
AI (XAI) methods. The XAI methods we use attribute the decision of a model to
its inputs. The result is a score for each input indicating its importance relative
to the other inputs. To obtain the toxic spans we threshold these importance
scores, thereby predicting that the toxic parts of the input are those parts which
were most important to the binary toxicity classifier.

LMs. We fine-tune an LM (BERT) for token classification using BIO labels.

4 Experimental Details

Our main experimental contribution is the systematic evaluation of methods for
the prediction of toxic spans in a cross-domain setting. Each of our methods is
evaluated both under in-domain and cross-domain conditions.

4.1 Datasets

Our experiments are carried out with two datasets annotated for toxic spans.
Their similarities and differences are described below.

SemEval-2021 Task 5 [14]. This shared task introduced a dataset of toxic sam-
ples harvested from the Civil Comments dataset, re-annotating a portion for
toxic spans. In the campaign, annotators were asked to “Extract the toxic word
sequences (spans) of the comment [. . . ], by highlighting each such span”. The
inter-annotator agreement was “moderate”, with the lowest observed Cohen’s
Kappa being 0.55.

HateXplain [11]. This dataset consists of posts from the social media platforms
Twitter and Gab. Besides the message-level toxicity annotations, the annotators
were also asked to “highlight the rationales that could justify the final class.” No
inter-annotator agreement is reported for the span annotations.

In Table 1, one can see that both datasets have toxic samples annotated with
toxic spans. However, the SemEval data does not include any non-toxic samples.
Furthermore, both datasets have some toxic samples without any spans (6.1%
and 1.8%, respectively). For both datasets this could either indicate that the
annotators disagreed on which characters/tokens were toxic (final annotation
was decided by a majority vote) or that the annotators agreed that, despite the
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Table 1. Dataset statistics. Columns ‘Train’, ‘Dev’, and ‘Test’ show the distribution
of toxic (Toxic) and non-toxic (¬Toxic) spans. The rows show the fraction of data that
has spans (Span) and the fraction that does not (No span). The last column shows the
average percentage of each sample’s text that is part of a toxic span.

Train Dev Test
Span-%

Toxic ¬Toxic Toxic ¬Toxic Toxic ¬Toxic

SemEval
Span 93.9% - 93.8% - 80.3% - 13.2%
No span 6.1% - 6.2% - 19.7% - -

HateXplain
Span 57.6% - 57.4% - 57.5% - 15.7%
No span 1.8% 40.6% 2.0% 40.6% 1.9% 40.6% -

sample being toxic, there is no specific span that is responsible for the toxicity
of the message (implicit toxicity).

In order to perform the evaluation in the ‘ToxicInferred’ setting, we train
a binary toxicity classifier. To make this possible on the SemEval dataset, we
supplemented the data with non-toxic samples from the same Civil Comments
data that the original dataset is based on. In line with the requirements used
for collecting the SemEval data, we take comments that were marked not toxic
by a majority of at least three raters. We randomly sample from the eligible
comments until we reach a 50/50 balance between toxic and non-toxic messages.

4.2 Implementation Details

We use BERT-base [5] in the following three cases. After fine-tuning for binary
toxicity classification we use it (1) as the model to which we apply rationale
extraction and (2) for the binary toxicity predictions that are required for the
‘ToxicityInferred’ setting. Finally, we also fine-tune BERT directly for toxic spans
detection, including a variant with a final Conditional Random Fields (CRF)
layer [7]. We choose BERT because Zhu et al. [24] used it to obtain state-of-the-
art performance in the Semeval 2021 shared task [14].

4.3 Hyper-parameter Search

We first evaluate each combination of hyper-parameters using the same dataset
for training and evaluation (in-domain). The training and evaluation are done
on the canonical training and development splits, respectively. To perform the
hyper-parameter tuning, we select the set of hyper-parameter values with the
best in-domain performance. These are then used to evaluate on the test splits
of both the same dataset (in-domain) and cross-domain dataset.

Method-agnostic. We include one hyper-parameter that influences the way in
which the predicted spans are evaluated, determining how close together different
spans are allowed to be. This process merges any two spans that are at most n

characters apart, which may be beneficial for each of the methods, since none
of them predicts white space between tokens as toxic (the lexicons just match
the words, while the other two methods use BERT tokenization which removes
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white space characters). The grid-search values are n ∈ {0, 1, 9 999}. A value of
9 999 is added to join all spans together, never allowing more than one span.

Lexicons. We evaluate both constructed and existing lexicons. The existing lex-
icons we use are HurtLex [2] and the lexicon published by Wiegand et al. [23].
Both lexicons come in two differently sized variants: ‘conservative’ and ‘inclu-
sive’ for HurtLex, and ‘base’ and ‘expanded’ for Wiegand et al. [23]. We refer to
these as Hurtlex-c, Hurtlex-i, Wiegand-b, and Wiegand-e. The constructed lex-
icons have method-specific hyper-parameters. The first is the threshold θ that
sets the minimum toxicity score required for a word to enter the lexicon (see
subsection 3.2). The second is the minimum number of occurrences of words in
the dataset (min_occ). We thereby exclude words that occur so infrequently
that we cannot accurately measure their toxicity. Values included in the search
are: {0, 0.05, . . . , 1} for the value of θ, and {1, 3, 5, 7, 11} for the value of the
minimum number of occurrences.

Rationales. We include the following four input attribution methods in our ex-
periments: Saliency [19], Integrated Gradients [21], DeepLIFT [20], and LIME
[17]. Each method works by generating scores that indicate the relative impor-
tance of the input tokens. Following Pluciński & Klimczak [15], we rescale the
scores to sum up to 1. The threshold that the score must exceed in order to
be predicted as toxic is a hyper-parameter that we tune. Values included in the
search for the threshold are {−0.05,−0.025, . . . , 0.5}.

LMs. The hyper-parameters specific to the language models such as learning
rate, dropout, etc. are left to their default values1.

5 Results

In this section, we present the results of our experiments. We first report the
in-domain performance of the span detection methods. Then we report the cross-
domain performance and the relative drop compared to the in-domain results.

In-domain. Performance of the methods can be seen in Table 2a for the ‘Tox-
icOracle’ setting, and in Table 3a for the ‘ToxicInferred’ setting. We observe
similar patterns in both settings. For example, it is clear that in both cases
in-domain performance is highest for the fine-tuned LMs, which matches results
obtained in the shared task [14]. The second best scores are achieved with the lex-
icons constructed from span-annotated training data. Existing lexicons do worse
and are outperformed by the rationale extraction using Integrated Gradients.

When comparing our results (Table 2a) to those obtained by Zhu et al. [24],
we see that our fine-tuned LMs and lexicon underperform theirs by several points
(64.4 vs. 69.44 for the LMs and 59.8 vs. 65.0 for the lexicon). This could be
because we did not clean the training data as they did or due to minor differences
in training setup and lexicon construction.

1 See https://huggingface.co/bert-base-cased/blob/main/config.json

https://huggingface.co/bert-base-cased/blob/main/config.json
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Table 2. Results for setting ‘ToxicOracle’ after hyper-parameter tuning for F+

1 on the
Toxic part of each dataset. The metric columns from left to right are: F+

1 , Precision,
and Recall on the Toxic part of the datasets; the F

+

1 score on the non-toxic part of the
datasets (¬Toxic); and, the macro average (harmonic mean) of the F

+

1 scores between
the toxic and non-toxic parts of the dataset. The last two of which are in gray to
emphasize that in this setting these metrics are not optimized and/or tuned for. For
both tables the overall highest scores are in bold, the best scores of the second best
method are underlined.

(a) In-domain results for the SemEval and HateXplain datasets.

Toxic ¬Toxic Macro Toxic ¬Toxic Macro

F
+

1 Prec. Rec. F
+

1 F
+

1 F
+

1 Prec. Rec. F
+

1 F
+

1

HateXplain SemEval

L
ex

ic
o
n
s

Constr. 64.7 74.4 69.6 12.4 20.8 59.8 59.5 84.5 59.0 59.4
HurtLex-c 36.4 47.2 39.5 14.2 20.4 42.9 40.4 72.2 20.0 27.3
HurtLex-i 40.3 39.5 56.5 2.7 5.0 34.9 29.0 76.6 6.3 10.6
Wiegand-b 47.4 68.2 48.4 37.5 41.8 36.1 44.7 42.1 58.3 44.6
Wiegand-e 44.9 56.3 50.4 15.7 23.3 46.1 44.2 73.7 21.9 29.7

R
a
ti
o
n
a
le

s Saliency 44.1 50.1 61.7 5.5 9.8 53.6 57.5 73.4 26.8 35.7
Int. Grad. 54.0 69.9 57.1 7.0 12.4 57.6 60.2 77.0 20.4 30.1
DeepLIFT 27.3 22.7 70.0 4.9 8.2 33.7 33.4 54.3 9.2 14.5
LIME 40.6 46.6 46.1 0.3 0.5 45.9 48.1 63.1 52.0 48.7

L
M

s BERT 74.9 82.3 80.4 12.3 21.1 64.4 64.7 87.4 51.0 56.9
BERT+CRF 73.5 80.8 79.3 12.1 20.9 64.1 64.5 86.7 50.4 56.4

(b) Cross-domain results for the SemEval and HateXplain datasets. Column title X →

Y indicates trained on X, evaluated on Y .

SemEval → HateXplain HateXplain → SemEval

Toxic ¬Toxic Macro Toxic ¬Toxic Macro
F

+

1 Prec. Rec. F
+

1 F
+

1 F
+

1 Prec. Rec. F
+

1 F
+

1

L
ex

ic
o
n
s

Constr. 24.6 49.7 23.1 45.0 31.8 13.6 16.7 9.1 46.5 21.0
HurtLex-c 36.4 47.2 39.5 14.2 20.4 42.9 40.4 72.2 20.0 27.3
HurtLex-i 40.3 39.5 56.5 2.7 5.0 34.9 29.0 76.6 6.3 10.6
Wiegand-b 47.4 68.2 48.4 37.5 41.8 36.1 44.7 42.1 58.3 44.6
Wiegand-e 44.9 56.3 50.4 15.7 23.3 46.1 44.2 73.7 21.9 29.7

R
a
ti
o
n
a
le

s Saliency 39.0 53.8 41.2 6.8 11.5 33.2 28.3 63.8 28.7 30.8
Int. Grad. 34.2 44.0 37.6 2.7 5.0 35.0 33.1 61.1 12.8 18.7
DeepLIFT 27.2 33.6 34.6 3.1 5.5 17.5 13.9 63.5 11.7 14.0
LIME 23.5 34.4 24.8 8.2 12.1 17.6 15.4 32.4 0.9 1.6

L
M

s BERT 42.7 56.7 45.9 16.8 24.1 25.7 31.5 31.8 60.5 36.0
BERT+CRF 42.8 57.6 46.1 18.5 25.9 27.5 29.3 40.6 27.7 27.6
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Table 3. Results for the ‘ToxicInferred’ setting after hyper-parameter tuning for Macro
F

+

1 . The metric columns from left to right are: F+

1 , Precision, and Recall on the Toxic
part of the datasets; the F

+

1 score on the non-toxic part of the datasets (¬Toxic); and,
the macro average (harmonic mean) of the F

+

1 scores between the toxic and non-toxic
parts of the dataset. In both tables, the overall highest scores are in bold, the best
scores of the second best method are underlined.

(a) In-domain results for the SemEval and HateXplain datasets.

Toxic ¬Toxic Macro Toxic ¬Toxic Macro

F
+

1 Prec. Rec. F
+

1 F
+

1 F
+

1 Prec. Rec. F
+

1 F
+

1

HateXplain SemEval

L
ex

ic
o
n
s

Constr. 53.3 81.1 53.2 82.0 64.6 60.5 61.9 81.2 95.8 74.2
HurtLex-c 30.8 48.4 31.8 82.6 44.8 43.7 41.2 70.6 95.2 59.9
HurtLex-i 33.8 40.9 45.7 81.5 47.7 35.7 29.4 74.2 94.8 51.9
Wiegand-b 42.9 72.3 42.9 84.5 56.9 37.0 45.9 41.4 97.0 53.6
Wiegand-e 41.2 61.1 44.7 82.2 54.9 46.7 45.1 71.9 95.3 62.7

R
a
ti
o
n
a
le

s Saliency 36.0 53.3 46.8 82.7 50.1 53.5 58.4 70.4 94.7 68.4
Int. Grad. 46.7 80.3 45.1 81.3 59.4 57.9 61.7 74.4 94.7 71.9
DeepLIFT 21.6 21.5 54.8 81.7 34.1 34.4 33.8 52.2 94.8 50.5
LIME 37.4 59.1 37.5 81.3 51.2 47.1 49.8 61.8 94.6 62.8

L
M

s BERT 59.5 84.9 61.7 81.5 68.7 63.9 65.6 84.1 94.8 76.4
BERT+CRF 58.6 83.6 61.1 81.7 68.3 63.6 65.4 83.3 94.9 76.1

(b) Cross-domain results for the SemEval and HateXplain datasets. Column title X →

Y indicates trained on X, evaluated on Y .

SemEval → HateXplain HateXplain → SemEval

Toxic ¬Toxic Macro Toxic ¬Toxic Macro
F

+

1 Prec. Rec. F
+

1 F
+

1 F
+

1 Prec. Rec. F
+

1 F
+

1

L
ex

ic
o
n
s

Constr. 14.3 43.6 11.1 64.2 23.4 17.2 18.2 2.6 97.7 29.3
HurtLex-c 29.5 51.2 30.8 51.9 37.6 23.1 34.2 20.0 96.4 37.3
HurtLex-i 30.6 41.8 40.6 48.6 37.5 21.3 25.3 21.6 96.1 34.9
Wiegand-b 34.5 66.6 34.4 62.0 44.3 22.7 39.2 13.2 97.8 36.8
Wiegand-e 31.8 56.0 34.3 54.2 40.1 23.4 35.2 19.9 96.4 37.6

R
a
ti
o
n
a
le

s Saliency 27.3 53.6 27.0 49.5 35.2 21.1 28.2 15.8 96.4 34.6
Int. Grad. 25.4 47.7 24.4 48.3 33.3 22.4 34.7 15.3 96.0 36.3
DeepLIFT 19.7 34.3 22.7 49.0 28.1 16.5 11.5 19.3 96.0 28.1
LIME 20.1 40.7 19.2 49.0 28.5 19.8 23.9 13.6 96.0 32.9

L
M

s BERT 31.6 55.7 33.3 51.3 39.1 20.3 27.0 11.8 96.4 33.5
BERT+CRF 32.1 56.7 33.8 51.7 39.6 20.1 25.9 13.1 96.2 33.2
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Cross-domain. The performance of the methods under cross-domain conditions
can be seen in Table 2b for the ‘ToxicOracle’ setting and in Table 3b for the
‘ToxicInferred’ setting. Contrary to the in-domain results, the fine-tuned LMs
are outperformed by the Wiegand et al. [23] lexicons in all cases.

We calculate the ratio of cross-domain performance to in-domain perfor-
mance (as measured by Toxic and Macro F+

1 scores for the ‘ToxicOracle’ and
‘ToxicInferred’ settings, respectively). The performance of the constructed lex-
icons drops dramatically (to 34% of the in-domain scores on average) resulting
in them being ranked last in the cross-domain setup. The LMs retain more of
their performance, but still drop to (on average) 50%. The rationale extraction
methods keep 62% of their original performance on average. Since the existing
lexicons are not related to any domain, they do not lose any performance in
the ‘ToxicOracle’ setting. In the ‘ToxicInferred’ setting the drop is small for ‘Se-
mEval → HateXplain’ (retaining 86%) while losing substantial performance for
‘HateXplain → SemEval’ (keeping only 56%). The only reason these lexicons
could perform worse in this setting is due to cross-domain application of the
binary toxicity classifier, suggesting that the classifier transfers much better in
one direction than the other.

6 Error Analysis

We analyse and compare the types of errors made by each of the methods. We
take inspiration from van Aken et al. [1] who perform a detailed error analysis
where they classify errors by their type. We analyse prediction errors made by
the best performing variant of each method. By selecting the best methods we
analyse the best case scenario for each approach. The errors are sampled such
that we have guaranteed representation for every combination of high and low
precision and recall(see Appendix B for details). We sample 75 errors for each
method on each dataset (225 per dataset, 450 total). We identify a number of
error classes, where each contains either false negatives (FN) or false positives
(FP). Four classes and three aggregations can be seen with their prevalence for
each method and dataset in Table 4.

Doubtful Labels. Likely due to the subjective nature of this task, the number
of errors classified as having a doubtful label was quite high. In total, 40.9% of
the sampled HateXplain errors, and 23.5% of the sampled SemEval errors had a
doubtful label. This is in line with analyses done for message-level detection [9].

False Negatives. The language model has the lowest false negative rate for Ha-
teXplain, but for the SemEval dataset the lexicon-based span prediction has the
lowest false negative rate. The FN-explicit class indicates what proportion of
false negatives involved explicitly toxic words (e.g., “nonsensical aussie retarded

babbles”). The class was applied to any prediction that involved not predicting
a word despite it being explicitly toxic. On both datasets, these kinds of errors
were most common for the rationale extraction method, and least common for
the lexicon-based predictions. The latter was expected since these lexicons are
created specifically to cover explicitly toxic words. We also tracked what we call
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subword errors, which are span predictions that do not cover a word entirely.
The FN-subword-toxic class was applied to any erroneous spans from which
a morphologically relevant part was missing. For example: “. . . what stupidity
and arrogance . . . ” (predicted span in bold). These errors were most prevalent
among the lexicon-based predictions. This is due to the lexicons being applied
by finding exact matches without taking into account affixes.

False Positives. The overall false positive rate is the lowest for the rationale
extraction method on both datasets, and was high for the lexicons and LMs. A
high false positive rate for LMs is in line with previous findings on message-level
toxicity detection [8]. For the lexicon the high rate can be explained by the high
rate of FP-subword-toxic errors. That class tracks false positives where one of
the spans is an explicitly toxic word, but inside a non-toxic word, for example,
the words ‘ho’ and ‘lame’ being marked in: “. . . that I somehow blame him . . . ”.
This happens often for the lexicon predictions, because it looks for any matches
with the lexicon’s entries. We also included FP-target, which is a false positive
of a target group, for example: “. . . republican you are not welcome here . . . ”.
This error type is quite rare, but more common for the fine-tuned LMs.

Table 4. The results of the error analysis, showing the prevalence of each class (rows)
for every method on each dataset (columns). Last three rows show aggregates, with
percentage of errors that had any of the subword classes, false negative classes, or false
positive classes. List of classes included in the aggregates can be found in Appendix B.

SemEval → HateXplain HateXplain → SemEval

Lexicon Rationale LM Lexicon Rationale LM
(Wiegand-b) (Saliency) (BERT) (Wiegand-e) (Int. Grad.) (BERT)

FN-explicit 19.6% 36.5% 21.4% 1.7% 37.3% 32.3%
FN-subword-morph 34.5% 4.9% 0.0% 11.9% 4.0% 0.0%
FP-subword-toxic 5.5% 2.1% 0.8% 31.1% 0.9% 3.6%
FP-target 0.0% 3.1% 5.5% 0.7% 0.6% 2.2%

*-subword-* 16.7% 16.3% 2.5% 66.5% 10.2% 12.0%
FN-* 59.9% 56.5% 48.1% 23.6% 60.4% 52.6%
FP-* 32.5% 22.3% 48.2% 76.8% 25.9% 60.9%

7 Conclusion & Discussion

We have evaluated three kinds of methods for toxic spans predictions in a cross-
domain setting. Our results show that the performance of the fine-tuned LMs
suffers greatly when applied to out-of-domain data, thereby making off-the-shelf
lexicons of toxic language the best performing option. This suggests that fine-
tuned LMs do not handle domain shift that may occur from changes in the use
of toxic language or the relative prominence of communities in the data. This
differs from what was observed for the message-level task, where LMs showed
better generalization capabilities. The cross-domain error analysis showed that
language models are more likely to produce false positives (excluding subword
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false positives). This means that tokens that are toxic in the training data are not
toxic in the test data across domains, where the learned lexical representations
do not transfer and are also not corrected in context by the models. In some
cases, we also found that targets of toxic language were falsely included in the
predicted spans. On the other hand, the spans predicted by language models also
miss more explicit toxicity than those predicted with lexicons, although rationale
extraction misses even more still.

Limitations of this work include: (a) the fine-tuning approach being evaluated
with BERT and no other LM; (b) the absence of attention-based XAI methods
among those selected for the rationale extraction approach; and (c) having no
more than two span-annotated datasets for the cross-domain evaluation.

In future work, we will focus on improving cross-domain performance by
combining approaches explored in this work within an ensemble strategy, since
our error analysis suggests that the methods make different types of errors.
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A Additional result table

Table A.1. Setting ‘ToxicOracle’: results after hyper-parameter tuning for macro F
+

1 .
The metric columns from left to right are: F+

1 , precision, and recall on the toxic part
of the datasets; the F

+

1 score on the non-toxic part of the datasets (¬Toxic); and, the
macro average (harmonic mean) of the F+

1 scores between the toxic and non-toxic parts
of the dataset. In both tables, the overall highest scores are in bold, the best scores of
the second best method are underlined.

(a) In-domain results for the SemEval and HateXplain datasets.

Toxic ¬Toxic Macro Toxic ¬Toxic Macro

F
+

1 Prec. Rec. F
+

1 F
+

1 F
+

1 Prec. Rec. F
+

1 F
+

1

HateXplain SemEval

L
ex

ic
o
n
s

Constr. 54.2 93.2 49.1 73.7 62.5 63.1 69.0 77.5 83.5 71.9
HurtLex-c 36.4 47.2 39.5 14.2 20.4 42.9 40.4 72.2 20.0 27.3
HurtLex-i 40.3 39.5 56.5 2.7 5.0 34.9 29.0 76.6 6.3 10.6
Wiegand-b 47.4 68.2 48.4 37.5 41.8 36.1 44.7 42.1 58.3 44.6
Wiegand-e 44.9 56.3 50.4 15.7 23.3 46.1 44.2 73.7 21.9 29.7

R
a
ti
o
n
a
le

s Saliency 30.1 70.9 28.3 44.6 35.9 48.7 67.9 52.5 52.8 50.7
Int. Grad. 34.3 83.9 27.9 40.2 37.0 53.2 74.3 53.4 70.7 60.7
DeepLIFT 21.1 33.2 39.3 48.8 29.4 33.3 42.6 34.0 45.1 38.3
LIME 30.7 62.2 34.2 36.3 33.3 47.7 58.1 53.9 67.9 56.0

L
M

s BERT 74.9 82.3 80.4 12.3 21.1 64.4 64.7 87.4 50.9 56.9
BERT+CRF 73.5 80.8 79.3 12.1 20.9 64.1 64.5 86.7 50.4 56.4

(b) Cross-domain results for the SemEval and HateXplain datasets. Column title X →

Y indicates trained on X, evaluated on Y .

SemEval → HateXplain HateXplain → SemEval

Toxic ¬Toxic Macro Toxic ¬Toxic Macro
F

+

1 Prec. Rec. F
+

1 F
+

1 F
+

1 Prec. Rec. F
+

1 F
+

1

L
ex

ic
o
n
s

Constr. 12.8 46.6 9.4 65.1 21.4 19.1 11.6 0.3 95.7 31.9
HurtLex-c 36.4 47.2 39.5 14.2 20.4 42.9 40.4 72.2 20.0 27.3
HurtLex-i 40.3 39.5 56.5 2.7 5.0 34.9 29.0 76.6 6.3 10.6
Wiegand-b 47.4 68.2 48.4 37.5 41.8 36.1 44.7 42.1 58.3 44.6
Wiegand-e 44.9 56.3 50.4 15.7 23.3 46.1 44.2 73.7 21.9 29.7

R
a
ti
o
n
a
le

s Saliency 29.2 61.1 24.3 30.6 29.9 34.9 47.2 34.5 65.9 45.7
Int. Grad. 16.6 48.8 13.3 53.7 25.4 28.4 47.7 21.9 57.6 38.0
DeepLIFT 20.0 41.9 19.8 28.5 23.5 17.8 17.0 26.0 56.4 27.1
LIME 17.6 37.4 16.5 27.5 21.5 19.9 19.8 33.7 43.7 27.3

L
M

s BERT 42.7 56.7 45.9 16.8 24.1 25.7 31.5 31.8 60.5 36.0
BERT+CRF 42.8 57.6 46.1 18.5 25.9 27.5 29.3 40.6 27.7 27.6
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B Error analysis details

The erroneous predictions are sampled as follows.
- We start with the cross-domain erroneous predictions (F1 < 1) of the best

performing lexicon, attribution method, and language model on both the
HateXplain and SemEval datasets (in the ‘ToxicOracle’ setting).

- We perform a non-uniform sampling where we categorize the predictions
based on their precision and recall first, and then sample from each category
to ensure that they are all represented. Splitting into low/high was done
based on ranking, i.e., values up to and including the median are low, values
above the median are high, yielding four categories. The relative frequency
of these categories is corrected before error class prevalence is reported for
the whole dataset. We include a final category for empty predictions, since
precision and recall are not defined for these predictions.

- For each category, we sampled 15 data points. Only one category (low pre-
cision and high recall) for one of the methods (fine-tuned LM trained on
HateXplain, tested on SemEval) was empty, all others had at least 15 sam-
ples (also see Table B.1). More samples were drawn from the other categories
to compensate for this.

We included the following error classes in our analysis:

– Doubtful labels:
• doubt-label-missing: If the label spans do not include toxic spans that

they should.
• doubt-label-toomany: If the label spans include spans that should not

be included, because we do not think they are toxic.
– Subword errors, indicating lack of word-level understanding:

• FP-subword-toxic: incorrectly recognizes toxic word within non-toxic
words. For example: the words ‘ho’ and ‘lame’ being marked in: “. . . the
straw man argument that I somehow blame him . . . ”.

• FP-subword-nontoxic: incorrectly recognizes a non-toxic word within
other non-toxic words. For example: “. . . destroy records and burn the
paperwork? . . . ”

• FN-subword-morph: morphologically relevant parts of toxic span are not
predicted, such as predicting only the stem of a toxic word. For example:
“. . . what stupidity and arrogance . . . ”.

• FN-subword: missing part of toxic word that is not morphologically rel-
evant. For example: only ‘oron’ being predicted in ‘moron”.

– False negatives:
• FN-explicit: missing explicitly toxic spans; including slurs, etc.
• FN-explicit-spelling: missing explicitly toxic spans because of abbre-

viations, or uncommon or alternative spellings.
• FN-implicit: missing non-obvious toxic spans. For example: “<user>

<user> i can’t stand this look they all look like identical blow up dolls”.
Other examples include metaphors and irony.

• FN-phrase-part: missed part of (some of the words) in a toxic phrase.
For example: “... Posting his citation (on-line) only shows that "diesel
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jerk" is proud of his actions, rather than ashamed.” does not include
‘diesel’ in the toxic span.

• FN-whitespace: prediction does not include white space that it should
have included.

– False positives:
• FP-target: predicting target groups (or proper nouns) as part of the

toxic spans. For example: “. . . republican you are not welcome here we
hate you . . . ”.

• FP-pos: predicting words that are a part-of-speech which should not be
part of toxic spans, such as pronouns and prepositions.

Table B.1. The number of samples in each category, from left to right: high precision
and recall, high precision and low recall, low precision and high recall, low precision
and recall, empty predictions, and total number of errors.

SemEval → HateXplain HateXplain → SemEval

P ↑ P ↑ P ↓ P ↓
∅ Total

P ↑ P ↑ P ↓ P ↓
∅ Total

R ↑ R ↓ R ↑ R ↓ R ↑ R ↓ R ↑ R ↓

Lexicon 215 194 170 240 176 995 436 367 189 631 94 1717
Rationale 227 113 122 257 372 1091 158 92 17 234 1209 1710
LM 263 122 112 282 152 931 545 39 0 854 348 1786

Lexicon 22% 19% 17% 24% 18% 25% 21% 11% 37% 5%
Rationale 21% 10% 11% 24% 34% 9% 5% 1% 14% 71%
LM 28% 13% 12% 30% 16% 31% 2% 0% 48% 19%
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C Hyper-parameters

Table C.1. Best sets of hyperparameters when fine-tuning for Macro F
+

1 for each
model on both datasets. ‘Fill-chars’ is a hyper-parameter described in subsection 4.3.

(a) Lexicons. The method-specific parameters are described in subsection 4.3, with
‘Min-occ’ referring to the minimum occurrences required for inclusion in the lexicon.

Prop-binary
HateXplain SemEval

Fill-chars Min-occ. θ Fill-chars Min-occ. θ

True

Constr. 0 7 0.5 1 11 0.35
HurtLex-c 0 - - 0 - -
HurtLex-i 0 - - 0 - -
Wiegand-b 0 - - 0 - -
Wiegand-e 0 - - 0 - -

False

Constr. 0 5 0.85 1 11 0.5
HurtLex-c 0 - - 0 - -
HurtLex-i 0 - - 0 - -
Wiegand-b 0 - - 0 - -
Wiegand-e 0 - - 0 - -

(b) Rationale Extraction. Method-specific parameters are described in subsection 4.3

Prop-binary
HateXplain SemEval

Fill-chars Threshold Fill-chars Threshold

True

Saliency 0 .055 0 .081
Int. Grad. 0 .081 1 .133
DeepLIFT 9999 .133 0 .133
LIME 0 .133 0 .264

False

Saliency 0 .107 1 .133
Int. Grad. 0 .238 0 .474
DeepLIFT 9999 .290 0 .317
LIME 9999 .500 0 .500

(c) Fine-tuned Language Models.

Prop-binary
HateXplain SemEval

Fill-chars Fill-chars

True
BERT 0 1
BERT+CRF 0 1

False
BERT 0 1
BERT+CRF 0 1
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