Skip to main content

Stark: A Software Tool for the Analysis of Robustness in the unKnown Environment

  • Conference paper
  • First Online:
Coordination Models and Languages (COORDINATION 2023)

Abstract

Cyber-Physical Systems (CPSs) are characterised by the interaction of various agents operating under highly changing and, sometimes, unpredictable environmental conditions. It is therefore fundamental to verify whether these systems are robust against perturbations, i.e., whether systems are able to function correctly even in perturbed circumstances. In this paper we present the Software Tool for the Analysis of Robustness in the unKnown environment (Stark), our Java tool for the specification, analysis and testing of robustness properties of CPSs. Stark includes: (i) a specification language for systems behaviour, perturbations, distances on systems behaviours, and properties of those distances; (ii) a module for the simulation of system behaviours and their perturbed versions; (iii) a module for the evaluation of distances between behaviours; (iv) a statistical model checker for formulae in the Robustness Temporal Logic (RobTL), a temporal logic for the specification and verification of properties on the evolution of distances between the behaviours of CPSs, and thus also of robustness properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Data Availability Statement

The artifact is available in the Software Heritage repository: swh:1:dir:98532d8c770f9d115c692e932869c446417d8b34

Notes

  1. 1.

    The tool has been also published on Software Heritage with ID swh:1:dir:98532d8c770f9d115c692e932869c446417d8b34.

  2. 2.

    https://commons.apache.org/proper/commons-math/.

  3. 3.

    Due to a lack of space only a small code snippet is provided. Complete specification is available at http://quasylab.unicam.it/stark/.

References

  1. Baier, C.: Probabilistic model checking. In: Esparza, J., Grumberg, O., Sickert, S. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 45, pp. 1–23. IOS Press (2016). https://doi.org/10.3233/978-1-61499-627-9-1

  2. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  3. Castiglioni, V., Loreti, M., Tini, S.: How adaptive and reliable is your program? In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 60–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0_4

    Chapter  MATH  Google Scholar 

  4. Castiglioni, V., Loreti, M., Tini, S.: RobTL: a temporal logic for the robustness of cyber-physical systems. CoRR abs/2212.11158 (2022). 10.48550/arXiv. 2212.11158

    Google Scholar 

  5. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear systems. In: Proceedings of RTSS 2017, pp. 297–306. IEEE Computer Society (2017). https://doi.org/10.1109/RTSS.2017.00035

  6. Chong, S., Lanotte, R., Merro, M., Tini, S., Xiang, J.: Quantitative robustness analysis of sensor attacks on cyber-physical systems. In: 26th ACM International Conference on Hybrid Systems: Computation and Control (2023)

    Google Scholar 

  7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  8. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical data time series. Theor. Comput. Sci. 408(1), 55–65 (2008). https://doi.org/10.1016/j.tcs.2008.07.004

    Article  MathSciNet  MATH  Google Scholar 

  9. Fränzle, M., Kapinski, J., Prabhakar, P.: Robustness in cyber-physical systems. Dagstuhl Reports 6(9), 29–45 (2016). https://doi.org/10.4230/DagRep.6.9.29

  10. Fremont, D.J., et al.: Scenic: a language for scenario specification and data generation. Mach. Learn. (2022). https://doi.org/10.1007/s10994-021-06120-5

    Article  Google Scholar 

  11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design patterns: elements of reusable object-oriented software. Addison-Wesley Professional, 1 edn. (1994)

    Google Scholar 

  12. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137 (2007). https://doi.org/10.1038/msb4100179

    Article  Google Scholar 

  13. Kleene, S.C.: Introduction to Metamathematics. Princeton, NJ, USA: North Holland (1952). https://doi.org/10.2307/2268620

  14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

    Article  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6

    Chapter  Google Scholar 

  16. Micskei, Z., Madeira, H., Avritzer, A., Majzik, I., Vieira, M., Antunes, N.: Robustness testing techniques and tools. In: Wolter, K., Avritzer, A., Vieira, M., van Moorsel, A. (eds.) Resilience Assessment and Evaluation of Computing Systems. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29032-9_16

  17. Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for biochemical networks. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 81–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_8

    Chapter  Google Scholar 

  18. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018). https://doi.org/10.1007/978-3-319-63588-0

  19. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinform. 25(12), 169–178 (2009). https://doi.org/10.1093/bioinformatics/btp200

  20. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theor. Comput. Sci. 412(26), 2827–2839 (2011). https://doi.org/10.1016/j.tcs.2010.05.008

    Article  MathSciNet  MATH  Google Scholar 

  21. Rungger, M., Tabuada, P.: A notion of robustness for cyber-physical systems. IEEE Trans. Autom. Control 61(8), 2108–2123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_26

    Chapter  Google Scholar 

  23. Shahrokni, A., Feldt, R.: A systematic review of software robustness. Inf. Softw. Technol. 55(1), 1–17 (2013). https://doi.org/10.1016/j.infsof.2012.06.002

    Article  Google Scholar 

  24. Sontag, E.D.: Input to State Stability: Basic Concepts and Results, pp. 163–220. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77653-6_3

  25. Vaserstein, L.N.: Markovian processes on countable space product describing large systems of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

    MATH  Google Scholar 

  26. Vissat, L.L., Loreti, M., Nenzi, L., Hillston, J., Marion, G.: Analysis of spatio-temporal properties of stochastic systems using TSTL. ACM Trans. Model. Comput. Simul. 29(4), 1–24 (2019). https://doi.org/10.1145/3326168

  27. Xiang, J., Fulton, N., Chong, S.: Relational analysis of sensor attacks on cyber-physical systems. In: 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, 21–25 June 2021, pp. 1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.00035

Download references

Acknowledgements

This work has been supported by the project “Programs in the wild: Uncertainties, adaptabiLiTy and veRificatiON” (ULTRON) of the Icelandic Research Fund (grant No. 228376-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Castiglioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castiglioni, V., Loreti, M., Tini, S. (2023). Stark: A Software Tool for the Analysis of Robustness in the unKnown Environment. In: Jongmans, SS., Lopes, A. (eds) Coordination Models and Languages. COORDINATION 2023. Lecture Notes in Computer Science, vol 13908. Springer, Cham. https://doi.org/10.1007/978-3-031-35361-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35361-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35360-4

  • Online ISBN: 978-3-031-35361-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics