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Abstract. We present here a pipeline for the automated discovery of repeated
motifs in audio. Our approach relies on state-of-the-art source separation, pre-
dominant pitch extraction and time series motif detection via the matrix profile.
Owing to the appropriateness of this approach for the task of motif recognition
in the Carnatic musical style of South India, and with access to the recently re-
leased Saraga Dataset of Indian Art Music, we provide an example application
on a recording of a performance in the Carnatic rāga, Rītigaul.a, finding 56 dis-
tinct patterns of varying lengths that occur at least 3 times in the recording. The
authors include a discussion of the potential musicological significance of this
motif finding approach in relation to the particular tradition and beyond.
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1 Introduction and Related Work

Short, recurring melodic phrases, often referred to as “motifs”, are important building
blocks in the majority of musical styles across the globe. The automatic identification
and annotation of such motifs is a prominent and rapidly developing topic in music
information retrieval [1–4], playing a significant role in music analysis [5–7], segmen-
tation [8–10] and development of musical theory [11–13]. No consensus exists on how
this is best achieved, and indeed difficulty and differences in evaluation make it hard to
contextualize the efficacy of a method outside of the task to which it is applied. A thor-
ough review and comparison of approaches that handle symbolic music representations
can be found in [1] and [4] however in this paper we focus on the much more common
case of music without notation, extracting repeated motifs from audio.

Difficulty in working with raw audio for this task stems from the incredibly dense
amount of information contained in audio signals, simultaneously clouding that which
we might be interested in and providing a heavy workload for computational meth-
ods. A common method of reducing this complexity is to extract from the raw audio
an object or feature set that captures the aspect of the music most relevant to the type
of motif desired, and to subsequently compute some self-similarity metric between all
subsequence pairs to group or connect similar sections [14, 15]. This could take the
form of audio features such as Mel-frequency cepstral coefficients (MFCC) [16, 17]
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or chroma [15, 18], rhythmic onsets [19, 20] or monophonic pitch [21, 22]. When per-
formed successfully, it is the latter that provides an abstraction with the most informa-
tion pertaining to the melody in audio. And with more recent advances in both pre-
dominant pitch extraction [23] and time series motif detection [24], we are afforded
the opportunity to revisit the approach of predominant pitch extraction/self-similarity
in computationally feasible time on relatively large time scales.

Certain musical styles are particularly suitable for this type of analysis: for exam-
ple, those for which automated transcription is not yet possible, and where the symbolic
to sonic gap is such that musically salient units may sometimes be better characterised
by segments of continuous time series pitch data than by transcriptions. This is the
case in Indian Art Music (IAM), including Hindustani and Carnatic styles. Automated
motif detection in these traditions is a limited but active area of research. In the case
of Carnatic music, svaras (notes) are coarticulated (merged) through gamakas (orna-
ments) [25]. This characteristic provides particular challenges for processes involving
automated segmentation, and can even mean that different Carnatic musicians’ annota-
tions of the same phrase may vary subtly in places, with different degrees of symbolic
detail being possible. This leaves motif detection through time series pitch data as one
of the most viable and popular approaches to finding meaningful melodic units in the
style [26–28].

In this paper we demonstrate an approach for the automated discovery of repeated
motifs in audio: state-of-the-art source separation [31], predominant pitch extraction
using the Melodia algorithm [23] and ultra-fast means of time series motif detection
via the matrix profile [24]. Owing to the appropriateness of this approach for the task
of motif recognition in Carnatic music, and with access to the recently released Saraga
Dataset of IAM [32], we provide an example application, applying these existing meth-
ods in this tradition. All code is available on GitHub3 with a Jupyter notebook walk
through of both the generalized and IAM-specific code.

2 Dataset

We demonstrate our approach on an example recording from the Saraga dataset [32].
Developed within the framework of the CompMusic project4 and openly available for
research, Saraga comprises two IAM collections, representing the Hindustani and Car-
natic traditions. Both collections comprise several hours of music with accompanying
time-aligned expert annotations and relevant musical (e.g. rāga, tāla, form) and edito-
rial (e.g. artist, work, concert) metadata. In this work we focus on a performance taken
from the Carnatic collection, 168 of which contain separate microphone recordings of:
lead vocal, background vocal (if present), violin, mridangam and ghatam (if present).
However, since these tracks are recorded from live performance, the multi-track audios
in the dataset contain considerable background leakage, i.e., are not completely isolated
from the other instruments.

We access and interact with the Saraga dataset through the mirdata library [33]. This
tool provides easy and secure access to the canonical version of the dataset, while load-

3 https://github.com/thomasgnuttall/carnatic-motifs-cmmr-2021/
4 https://compmusic.upf.edu/
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ing and managing the dataset contents (audio, annotations and metadata) to optimize
our research pipeline.

3 Methodology

The process consists of two stages (1) the extraction from audio of a vocal pitch track,
which consists of a one-dimensional time series representing the main melodic line of
the performance and (2) the use of self-similarity euclidean distance to identify likely
candidates for repeated motifs in the main melodic line.

3.1 Predominant Pitch Extraction

The quality and consistency of the predominant pitch extraction is paramount. Given
the shortage of training data and algorithms to extract the vocal pitch from Carnatic
music signals, our raw audio recording is subject to three processing steps to arrive at a
one dimensional time series of pitch values representing the main melodic line.

Isolating the Vocal Source Where possible we use the vocal track recording for anal-
ysis (still containing leakage from other instruments). If this is not available, the mix
is used. For the isolation of voice from the background instruments (both in mixed and
vocal tracks), we use Spleeter, which is a deep learning based source separation library
which achieves state-of-the-art results on automatically separating vocals from accom-
paniment [31].

Extracting the Predominant Pitch Curve We use one of the most popular signal pro-
cessing based algorithms for predominant pitch estimation from polyphonic music sig-
nals, the Melodia algorithm [23], applying an equal-loudness filter to the signal before-
hand to encourage a perceptually relevant extraction. In the majority of studies attempt-
ing this task in IAM, Melodia has achieved consistent and viable results [26,28–30,34].
We use a time-step of 2.9ms for the extraction.

Post-Processing Two post-processing steps are applied to the pitch track. (1) Gap in-
terpolation, linearly interpolating gaps of 250ms or less [36], typically caused by glottal
sounds and sudden decrease of pitch salience in gamakas and (2) Gaussian smoothing
with a sigma of 7, softening the curve and providing a more natural, less noisy shape.

The final extracted pitch track is a time-series of n pitch values, P = p1, p2, ..., pn.

3.2 Repeated Motif Discovery

To search P for regions of similar structure we look for groups of subsequences that
have a low euclidean distance between them. The subsequence length to search for, m
is a user-defined parameter of the process.
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Matrix Profile An efficient method of inspecting the euclidean distances between pair-
wise combinations of subsequences in a time series is the matrix profile [24]. Given a
time series, T , and a subsequence length, m, the matrix profile returns for each subse-
quence in T , the distance to its most similar subsequence in T . The STAMP algorithm
computes the matrix profile in impressive time by exploiting the overlap between sub-
sequences using the fast Fourier transform, requiring only one parameter, subsequence
length, m [24]. We use the non-z-normalized distance, since we are interested in match-
ing subsequences identical in shape and y-location (i.e. pitch).

The matrix profile is therefore defined as MP = ed1, ed2, ..., edn−m where edi
is the regular euclidean distance between the subsequence of length m beginning at
element i and its nearest neighbour in P .

Exclusion Mask To ensure that only subsequences of interest are considered, a mask
of subsequences in P to exclude is computed by applying a series of exclusion functions
to each subsequence. These exclusion functions are informed by expert understanding
of what constitutes a relevant motif in the tradition. Explicitly, the exclusion mask,
EM = em1, em0, ..., emn where emi is either 1 or 0, yes or no, does the subsequence
satisfy any of the following:

– Too silent - more than 5% percent of the subsequence is 0 (i.e. silence)
– Minimum gap - subsequence contains a silence gap of 250ms or more
– Too stable - in more than 63% of cases for a rolling window of 100, the average

deviation of pitch from the average is more than 5 Hz. This step is designed to
exclude subsequences with too many long held notes - although musically relevant,
not interesting from a motific perspective. A similar approach is taken in [26]

Subsequences that correspond to a mask value of 1 are not considered valid and not
returned.

Identifying Motif Groups The search for groups of repeated motifs begins by looking
for a parent subsequence; those in P that have the lowest euclidean distance to another
subsequence i.e. minimas in MP . The assumption being that if these subsequences
have one very near neighbour, i.e. they are repeated once, then they are more likely to
occur multiple times; a similar approach is used in [27].

For a candidate parent motif, we use the MASS similarity search algorithm [24] to
calculate the non-normalised euclidean distance to every other subsequence in the pitch
track, returning those that satisfy the requirements set by the parameters; topN,maxOcc,
minOcc and thresh. Algorithms 1 and 2 describe the process and parameters.

Output The returned motif groups are arrays of start indices in P . The number of
groups and occurrences in each is influenced by the topN , minOcc and maxOcc pa-
rameters.
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Algorithm 1 Identify groups of motifs with low inter-group euclidean distance
1: procedure GETMOTIFGROUPS

2: MP ← matrix profile array from Matrix Profile
3: P ← pitch sequence array from Predominant Pitch Extraction
4: EM ← exclusion mask array from Exclusion Mask
5: m ← pattern length
6: topN ← maximum number of groups to return
7: maxOcc ← maximum number of occurrences per group
8: minOcc ← minimum number of occurrences per group
9: thresh ← maximum length-normalised distance of occurrence to parent

10:
11: MP[where(EM == 1)] ← ∞
12: nGroups ← 0
13: allMotifs ← array()
14: while nGroups < topN
15: ix ← argmin(MP ) � get parent index
16: if MP[ix] == ∞ � entire sequence searched
17: break
18: motifs ← GETOCCURRENCES(ix,P,m,maxOcc, thresh,EM)
19: if Length(motifs) < minOcc � discard, not enough significant matches
20: continue
21: for mtf in motifs � motifs is an array of indices
22: MP[mtf - m : mtf + m] ← ∞ � clear part of array to avoid future discovery
23: nGroups ← nGroups + 1
24: allMotifs ← append motifs
25: return allMotifs � array of motif groups, each motif group an array of start indices
26: end procedure

Algorithm 2 Identify other occurrences of parent motif in P using MASS
1: procedure GETOCCURRENCES

2: ix ← index of parent sequence to query
3: P ← pitch sequence array from Predominant Pitch Extraction
4: m ← pattern length
5: maxOcc ← maximum number of occurrences to return
6: thresh ← maximum length-normalised distance of occurrence to parent
7: EM ← exclusion mask array from Exclusion Mask
8:
9: parent ← P[ix : ix + m]

10: stmass ← MASS(parent,P) � array of distances between parent and all subsequences
11: stmass[where(EM == 1)] ← ∞
12: nOccs ← 0
13: allOccs ← array()
14: while nOccs < maxOcc
15: ix ← argmin(stmass)
16: if stmass[ix]/m > thresh � length normalised distance
17: break � cease search, no significant patterns remain
18: stmass[ix - m : ix + m] ← ∞
19: allOccs ← append ix
20: return allOccs � array of occurrence start indices for this parent
21: end procedure
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(a) Motif 7 - 2 seconds

(b) Motif 9 - 4 seconds

(c) Motif 9 - 5 seconds

Fig. 1: Overlaid pitch contour plots of three returned motif groups. The y-axis of each
figure represents cents above the tonic (S) of 196Hz, divided into the discrete pitch
positions defined in Carnatic music theory for this rāga - S, R2, G2, M1, P, D2, N2 [35].
R2 is two semitones (200 cents) above the tonic, S, and G2 is one semitone (100 cents)
above R2, and so on. The oscillatory melodic movement that can be seen cutting across
these theoretical pitch positions is typical of the style, illustrating the challenges of
locating individual ’notes’, either through expert annotations or automatically.

4 Results

We include the results of our process applied to a performance by the Akkarai Sisters of
a composition titled Koti Janmani5, by the composer Oottukkadu Venkata Kavi, which

5 https://musicbrainz.org/recording/5fa0bcfd-c71e-4d6f-940e-
0cef6fbc2a32
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is set in the Carnatic rāga, Rītigaul.a. The process is run for pattern lengths of 2,3,4,
5 and 6 seconds using parameters; topN = 15, minOcc = 3, maxOcc = 20. The
parameter thresh is selected by subjective evaluation of the patterns returned in one
motif group, choosing a value beyond which consistency is lost.

The number of significant motif groups found for 2, 3, 4, 5 and 6 second runs is 15,
15, 11, 11 and 4 respectively. For the code and full results we refer the reader to the
GitHub repository. Fig. 1a, 1b and 1c present the pitch plots associated with the top 5
occurrences of an example pattern in the 2, 4 and 5 seconds groups respectively.

5 Discussion

Due to the current lack of complete (i.e., saturated) ground truth annotations in the
Saraga dataset, it is difficult to evaluate our application systematically. Creation of such
annotations are ongoing as part of this project. In the meantime, however, the nature of
the task and size of the results allow us to reflect on the coherency between patterns and
their significance within the tradition.

The high degree of similarity between patterns returned within groups is obvious
even to listeners who have no experience of the style, and can be appreciated from
both the audio and pitch plots. This similarity is unsurprising, we choose a modest
euclidean distance threshold and the process returns motifs that correspond to areas of
pitch that are very similar by this measure. It is however a testament to the quality and
consistency of the pitch extraction process and audio in the Saraga dataset [32], both
resources not yet available in previous works. And more impressive still, also unseen
in other works, is that these results can be achieved relatively quickly on a personal
machine requiring little user input: pattern length, m and euclidean distance threshold,
thresh (easily tuned in negligible time). This is due to the efficiency of the STAMP and
MASS algorithms in computing the all pairs self-similarity [24].

Of course, we are more interested in whether the consistent results identified by a
process like ours have the potential to contribute to ongoing musicological endeavours
of pattern recognition, documentation and music analysis in the Carnatic tradition. Ini-
tial evaluation by the third author, who has expertise in the tradition [25], suggests that
that there is a high degree of musical similarity across the returned patterns in each
group. At least the first few matches, and often all of the patterns, in each group would
be considered by experts in the style to consist of the same motifs, or motif fragments.
Some of the returned groups contain whole motifs that are particularly important for
this rāga; Rītigaul.a is one of the Carnatic rāgas that is expressed through a number of
characteristic motifs, sometimes referred to as pidi (catch-phrases), sañcāras or prayo-
gas [35].

Two examples of particularly musically significant motifs returned can be seen in
Fig. 1a and Fig. 1b. Fig. 1a shows a frequently recurring phrase in this composition
that includes the motif “npnn” (expressed here in sargam notation, which is used by
practitioners to represent Carnatic svaras). The fact that 11 results are returned for this
pattern (only five of these are illustrated for the sake of visual clarity) points to both
the significance of the phrase in this composition, and also the importance of the mo-
tif “npnn” in the rāga [35]. Fig. 1b consists of another recurring characteristic phrase
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“ssndmmnns”, which is amongst the annotations of characteristic phrases identified by
Carnatic musicians for the Saraga dataset [32].

The musicological applications of this process as it stands are limited to some extent
by the fact that some of the matches returned are not full motifs, but rather are partial:
for example, including part of one motif and then part of another (e.g., 5-second motif
0) or not returning the full motif (e.g., 5-second motif 1).6 Segmentation at musically
meaningful junctures such as silences or articulation of consonants should improve this.
Another problem is that the process currently often returns multiples of the same motif,
but with different top matches (e.g., 5-second motif groups 9 and 10). Lastly, it is clear
that we need to evaluate the results against comprehensive annotations of all motifs in
the performance,7 to discover whether the process returns a good number of the total
number of occurrences.

One interesting feature is that the process, in addition to returning precise matches
of motifs, also identifies those that are similar but not identical. This could be particu-
larly useful in a style such as Carnatic music which often employs a theme and variation
structure, where phrases are repeated many times but with various elaborations. We can
see an example of this returning of non-identical, but musically closely-related motifs
in Fig. 1c where 4 motifs are returned, with two of them including a variation in the
period between 0.5-1.5 seconds. Any process used to identify motifs in Carnatic mu-
sic for musicological purposes would ideally show this degree of flexibility, in order to
provide useful and meaningful results. Finally, considering the significance of recurring
motifs in the vast majority of musical styles, it seems likely that this process would be
musically relevant beyond the specific case of Carnatic music.

6 Further Work

Close scrutiny of the results offers potential lines of improvements; variable length
motif detection could help capture full motifs rather than partial motifs, so too could
more tradition-specific exclusion rules such as consonant onset detection, which should
aid in further constraining the search to whole motifs due to the fact that the style is
melismatic, with several svaras often sung to one syllable. An essential next step for the
continuation of this work is the development of a more empirical evaluation framework
of comprehensive ground truth motifs created in collaboration with expert performers
of the tradition. We also recognize that to facilitate inter-recording discovery, a dynamic
time warping distance measure or tempo normalisation might be necessary.

7 Conclusion

We hope to have demonstrated the effectiveness of predominant pitch extraction and
matrix profile/self-similarity for the task of repeated motif identification and annotation
in audio. We highlight its potential for these tasks in Carnatic music, a tradition where

6 Please refer to the Github repository for results not plotted here.
7 Although some motifs are annotated in the Saraga dataset, these annotations are not complete.

Such annotating is extremely time consuming and must be done by practitioners of the style.
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transcriptions into symbolic representation can show variance, and so where working
directly with time series pitch data from audio is a more promising approach to motif
identification. Alongside this document we provide the code and full results for the
application to this tradition as well as to example audio from other musical styles.
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