Skip to main content

Musical Structure Analysis and Generation Through Abstraction Trees

  • Conference paper
  • First Online:
Music in the AI Era (CMMR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13770 ))

Included in the following conference series:

  • 330 Accesses

Abstract

“Structure” is a somewhat elusive concept in music, despite being of extreme importance in a variety of applications. Being inherently a hidden feature, it is not always explicitly considered in algorithms and representations of music. We propose a hierarchical approach to the study of musical structures, that builds upon tree representations of music like Schenkerian analysis, and adds additional layers of abstraction introducing pairwise comparisons between these trees. Finally, these representations can be joined into probabilistic representations of a music corpus. The probability distributions contained in these representation allow us to use concepts from Information Theory to show how the structures we introduce can be applied to musicological, music information retrieval applications and structure-aware music generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah, S., Gold, N., Marsden, A.: Analysing symbolic music with probabilistic grammars. In: Computational Music Analysis, pp. 157–189. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25931-4_7

    Chapter  MATH  Google Scholar 

  2. Anderson, C., Eigenfeldt, A., Pasquier, P.: The generative electronic dance music algorithmic system (GEDMAS). In: Proceedings of the Artificial Intelligence and Interactive Digital Entertainment (AIIDE’13) Conference, p. 4. AAAI Press, Boston, MA (2013)

    Google Scholar 

  3. Briot, J.P., Hadjeres, G., Pachet, F.D.: Deep Learning Techniques for Music Generation. Computational Synthesis and Creative Systems. Springer International Publishing, New York, NY (2020). https://doi.org/10.1007/978-3-319-70163-9, https://www.springer.com/gp/book/9783319701622

  4. Briot, J.-P., Pachet, F.: Deep learning for music generation: challenges and directions. Neural Comput. Appl. 32(4), 981–993 (2018). https://doi.org/10.1007/s00521-018-3813-6

    Article  Google Scholar 

  5. Cambouropoulos, E.: Towards a general computational theory of musical structure. Ph.D. thesis, Ph.D. thesis, University of Edinburgh (1998)

    Google Scholar 

  6. Cambouropoulos, E.: The local boundary detection model (LBDM) and its application in the study of expressive timing. In: ICMC, p. 8 (2001)

    Google Scholar 

  7. Carnovalini, F.: Open challenges in musical metacreation. In: Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, pp. 124–125. ACM, Valencia Spain, September 2019. https://doi.org/10.1145/3342428.3342678, http://dl.acm.org/doi/10.1145/3342428.3342678

  8. Carnovalini, F., Harley, N., Homer, S.T., Rodà, A., Wiggins, G.A.: Meta-evaluating quantitative internal evaluation: a practical approach for developers. In: Proceedings of the 12th International Conference on Computational Creativity, p. 5. Association for Computational Creativity, México Virtual, September 2021. https://computationalcreativity.net/iccc21/wp-content/uploads/2021/09/ICCC_2021_paper_98.pdf

  9. Carnovalini, F., Rodà, A.: A multilayered approach to automatic music generation and expressive performance. In: 2019 International Workshop on Multilayer Music Representation and Processing (MMRP), pp. 41–48. IEEE, Milano, Italy, January 2019. https://doi.org/10.1109/MMRP.2019.00016, https://ieeexplore.ieee.org/document/8665367/

  10. Carnovalini, F., Rodà, A.: A real-time tempo and meter tracking system for rhythmic improvisation. In: Proceedings of the 14th International Audio Mostly Conference: A Journey in Sound, pp. 24–31. ACM, Nottingham United Kingdom, September 2019. https://doi.org/10.1145/3356590.3356596, https://dl.acm.org/doi/10.1145/3356590.3356596

  11. Carnovalini, F., Rodà, A.: Computational creativity and music generation systems: an introduction to the state of the art. Front. Artif. Intell. 3, 14 (2020). https://doi.org/10.3389/frai.2020.00014, https://www.frontiersin.org/article/10.3389/frai.2020.00014/full

  12. Carnovalini, F., Rodà, A., Caneva, P.: A musical serious game for social interaction through augmented rhythmic improvisation. In: Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, pp. 130–135. ACM, Valencia Spain, September 2019. https://doi.org/10.1145/3342428.3342683, http://dl.acm.org/doi/10.1145/3342428.3342683

  13. Carnovalini, F., Rodà, A., Caneva, P.: A rhythm-aware serious game for social interaction. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-022-13372-3, https://link.springer.com/10.1007/s11042-022-13372-3

  14. Carnovalini, F., Rodà, A., Harley, N., Homer, S.T., Wiggins, G.A.: A new corpus for computational music research and a novel method for musical structure analysis. In: Audio Mostly 2021 (AM 2021), p. 4. ACM, virtual/Trento Italy (2021). https://doi.org/10.1145/3478384.3478402

  15. Chen, K., Zhang, W., Dubnov, S., Xia, G., Li, W.: The effect of explicit structure encoding of deep neural networks for symbolic music generation. In: 2019 International Workshop on Multilayer Music Representation and Processing (MMRP), pp. 77–84. IEEE (2019)

    Google Scholar 

  16. Forth, J., Wiggins, G.A.: An approach for identifying salient repetition in multidimensional representations of polyphonic music. In: London Algorithmics 2008: Theory and Practice. College Publications (2009)

    Google Scholar 

  17. Foxley, E.: Nottingham Database (2011). https://ifdo.ca/seymour/nottingham/nottingham.html

  18. Frankland, B.W., Cohen, A.J.: Parsing of melody: quantification and testing of the local grouping rules of Lerdahl and Jackendoff’s a generative theory of tonal music. Music Percept. 21, 499–543 (2004)

    Article  Google Scholar 

  19. Gilbert, É., Conklin, D.: A probabilistic context-free grammar for melodic reduction. In: Proceedings of the International Workshop on Artificial Intelligence and Music, 20th International Joint Conference on Artificial Intelligence, pp. 83–94 (2007)

    Google Scholar 

  20. Hamanaka, M., Hirata, K., Tojo, S.: Implementing “A generative theory of tonal music’’. J. New Music Res. 35(4), 249–277 (2006)

    Article  MATH  Google Scholar 

  21. Hamanaka, M., Hirata, K., Tojo, S.: FATTA: full automatic time-span tree analyzer. In: ICMC, pp. 153–156. Citeseer (2007)

    Google Scholar 

  22. Hamanaka, M., Hirata, K., Tojo, S.: deepGTTM-III: multi-task learning with grouping and metrical structures. In: Aramaki, M., Davies, M.E.P., Kronland-Martinet, R., Ystad, S. (eds.) CMMR 2017. LNCS, vol. 11265, pp. 238–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01692-0_17

    Chapter  Google Scholar 

  23. Herremans, D., Weisser, S., Sörensen, K., Conklin, D.: Generating structured music for bagana using quality metrics based on Markov models. Expert Syst. Appl. 42(21), 7424–7435 (2015). https://doi.org/10.1016/j.eswa.2015.05.043, https://www.sciencedirect.com/science/article/pii/S0957417415003796

  24. Herremans, D., Chew, E.: MorpheuS: generating structured music with constrained patterns and tension. IEEE Trans. Affect. Comput. 10(4), 16 (2017). https://doi.org/10.1109/TAFFC.2017.2737984, http://ieeexplore.ieee.org/document/8007229/

  25. Hsu, J.L., Chen, A.L.P., Liu, C.C.: Efficient repeating pattern finding in music databases. In: Proceedings of the Seventh International Conference on Information and Knowledge Management, pp. 281–288. CIKM 1998, Association for Computing Machinery, New York, NY, USA (1998). https://doi.org/10.1145/288627.288668, https://doi.org/10.1145/288627.288668

  26. Huron, D.: Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge, January 2008

    Google Scholar 

  27. Kassler, M.: Proving musical theorems I: The middleground of Heinrich Schenker’s theory of tonality. Basser Department of Computer Science, School of Physics, University of Sydney (1975)

    Google Scholar 

  28. Kirlin, P.B., Utgoff, P.E.: A framework for automated schenkerian analysis. In: ISMIR, pp. 363–368 (2008)

    Google Scholar 

  29. Lartillot, O.: Automated motivic analysis: an exhaustive approach based on closed and cyclic pattern mining in multidimensional parametric spaces. In: Computational Music Analysis, pp. 273–302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25931-4_11

    Chapter  MATH  Google Scholar 

  30. Lerdahl, F., Jackendoff, R.S.: A Generative Theory of Tonal Music. MIT Press, Cambridge, MA (1985)

    Google Scholar 

  31. Marsden, A.: Automatic derivation of musical structure: a tool for research on schenkerian analysis. In: ISMIR, pp. 55–58 (2007)

    Google Scholar 

  32. Marsden, A.: Schenkerian analysis by computer: a proof of concept. J. New Music Res. 39(3), 269–289 (2010). https://doi.org/10.1080/09298215.2010.503898, http://www.tandfonline.com/doi/abs/10.1080/09298215.2010.503898

  33. Marsden, A., Hirata, K., Tojo, S.: Towards computable procedures for deriving tree structures in music: context dependency in GTTM and Schenkerian theory. In: Proceedings of the Sound and Music Computing Conference 2013, pp. 360–367. KTH Royal Institute of Technology, Stockholm, Sweden (2013)

    Google Scholar 

  34. Mavromatis, P., Brown, M.: Parsing context-free grammars for music: a computational model of schenkerian analysis. In: Proceedings of the 8th International Conference on Music Perception & Cognition, pp. 414–415 (2004)

    Google Scholar 

  35. Meredith, D.: Cosiatec and siateccompress: pattern discovery by geometric compression. In: Music Information Retrieval Evaluation eXchange (MIREX 2013). International Society for Music Information Retrieval (2013). international Society for Music Information Retrieval Conference, ISMIR 2013; Conference date: 04–11-2013 Through 08–11-2013

    Google Scholar 

  36. Meredith, D., Lemström, K., Wiggins, G.A.: Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. J. New Music Res. 31(4), 321–345 (2002). https://doi.org/10.1076/jnmr.31.4.321.14162

  37. Nattiez, J.J.: Fondements d’une sémiologie de la Musique. Union Générale d’Editons (1975)

    Google Scholar 

  38. Orio, N., Roda, A.: A measure of melodic similarity based on a graph representation of the music structure. In: ISMIR, pp. 543–548. ISMIR, Kobe, Japan (2009)

    Google Scholar 

  39. Pearce, M., Wiggins, G.A.: Expectation in melody: the influence of context and learning. Music Percept. 23, 377–405 (2006)

    Article  Google Scholar 

  40. Phon-Amnuaisuk, S., Tuson, A., Wiggins, G.: Evolving musical harmonisation. In: Dobnikar, A., Steele, N.C., Pearson, D.W., Albrecht, R.F. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 229–234. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-6384-9_39

  41. Schenker, H.: Free Composition (Der freie Satz). Longman Music Series, Longman, New York, NY, USA (1935)

    Google Scholar 

  42. Schürmann, T., Grassberger, P.: Entropy estimation of symbol sequences. Chaos Interdiscip. J. Nonlinear Sci. 6(3), 414–427 (1996). https://doi.org/10.1063/1.166191, http://aip.scitation.org/doi/10.1063/1.166191

  43. Simonetta, F., Carnovalini, F., Orio, N., Rodà, A.: Symbolic music similarity through a graph-based representation. In: Proceedings of the Audio Mostly 2018 on Sound in Immersion and Emotion - AM 2018, pp. 1–7. ACM Press, Wrexham, United Kingdom (2018). https://doi.org/10.1145/3243274.3243301, http://dl.acm.org/citation.cfm?doid=3243274.3243301

  44. Temperley, D.: The Cognition of Basic Musical Structures. MIT Press, Cambridge, Massachusetts (2004). 1. paperback ed edn. oCLC: 255948904

    Google Scholar 

  45. Wiggins, G.A.: Models of musical similarity. Musicae Scientiae 11(1_suppl), 315–338 (2007). https://doi.org/10.1177/102986490701100112

  46. Wiggins, G.A.: Structure, abstraction and reference in artificial musical intelligence. In: Miranda, E.R. (ed.) Handbook of Artificial Intelligence for Music, pp. 409–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72116-9_15

    Chapter  Google Scholar 

  47. Wiggins, G.A., Papadopoulos, G., Phon-Amnuaisuk, S., Tuson, A.: Evolutionary methods for musical composition. University of Edinburgh, Department of Artificial Intelligence (1998)

    Google Scholar 

  48. Zixun, G., Makris, D., Herremans, D.: Hierarchical recurrent neural networks for conditional melody generation with long-term structure. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021). https://doi.org/10.1109/IJCNN52387.2021.9533493

Download references

Acknowledgments

FC received funding from the University of Padova, from Fondazione Ing. Aldo Gini, and from the Department of Information Engineering of the University of Padova. NH, ST and GW received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Carnovalini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carnovalini, F., Harley, N., Homer, S.T., Rodà, A., Wiggins, G.A. (2023). Musical Structure Analysis and Generation Through Abstraction Trees. In: Aramaki, M., Hirata, K., Kitahara, T., Kronland-Martinet, R., Ystad, S. (eds) Music in the AI Era. CMMR 2021. Lecture Notes in Computer Science, vol 13770 . Springer, Cham. https://doi.org/10.1007/978-3-031-35382-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35382-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35381-9

  • Online ISBN: 978-3-031-35382-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics