Skip to main content

Spatial Learning in a Virtual Reality Boeing 737NG Flight Deck

  • Conference paper
  • First Online:
Engineering Psychology and Cognitive Ergonomics (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14018))

Included in the following conference series:

  • 1311 Accesses

Abstract

The use of Virtual Reality (VR) in training rests on the assumption that perceptual and cognitive knowledge transfers to the real world. We conducted a repeated measures experiment to evaluate the transfer of spatial knowledge from three different environments (VR, an industry standard flat panel training device, and a physical flight deck) to a real flight deck. Participants had no previous flight deck experience. We used a time-limited endogenous search task to develop the spatial knowledge and provide an objective performance measure. We found a strong learning transfer effect for all groups, and no significant between group effects. These preliminary findings illustrate the possible utility of VR in aviation flight training, but further work is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A.S.A. (EASA): Certification Specifications for Aeroplane Flight Simulation Training Devices. Accessed 24 Jan 2023

    Google Scholar 

  2. Qualification and approval of flight simulators and flight training devices. F. A. Administration, F. A. Administration, and F. A. Administration Title 14, Chapter I, Subchapter D, Part 61, Subpart A (2022)

    Google Scholar 

  3. EASA: EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device. https://www.easa.europa.eu/en/newsroom-and-events/press-releases/easa-approves-first-virtual-reality-vr-based-flight-simulation. Accessed 2 Jan 2023

  4. I.A.T. Association: Competency-based training and assessment (CBTA) expansion within the aviation system. https://www.iata.org/contentassets/c0f61fc821dc4f62bb6441d7abedb076/cbta-expansion-within-the-aviation-system.pdf. Accessed 5 Jan 2023

  5. BürkiCohen, J., Soja, N.N., Longridge, T.: Simulator platform motion-the need revisited. Int. J. Aviat. Psychol. 8(3), 293–317 (1998). https://doi.org/10.1207/s15327108ijap0803_8

    Article  Google Scholar 

  6. Brki-cohen, J., Boothe, E., Soja, N., Disario, R., Longridge, T.: Simulator Fidelity -- The Effect of Platform Motion, 30 June 2000

    Google Scholar 

  7. Meyer, G.F., Wong, L.T., Timson, E., Perfect, P., White, M.D.: Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation (Objective Fidelity Evaluation in Flight Simulation), vol. 7, no. 9, p. e44381 (2012). https://doi.org/10.1371/journal.pone.0044381

  8. Reweti, S., Gilbey, A., Jeffrey, L.: Efficacy of low-cost PC-based aviation training devices. J. Inf. Technol. Educ. 16(1), 127–142 (2017). https://doi.org/10.28945/3682

    Article  Google Scholar 

  9. McDermott, J.T.: A comparison of the effectiveness of a personal computer -based aircraft training device and a flight training device at improving pilot instrument proficiency: a case study in leading regulatory change in aviation education (2005)

    Google Scholar 

  10. Reweti, S.: PC-based aviation training devices for pilot training in visual flight rules procedures : development, validation and effectiveness : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aviation at Massey University, Palmerston North, New Zealand. Doctor of Philosophy (Ph.D.) Doctoral, Massey University (2014). http://hdl.handle.net/10179/5454

  11. Cross, J.I., Boag-Hodgson, C., Ryley, T., Mavin, T., Potter, L.E.: Using extended reality in flight simulators: a literature review. IEEE transactions on visualization and computer graphics, p. 1 (2022). https://doi.org/10.1109/TVCG.2022.3173921

  12. Torrence, B., Dressel, J.: Critical review of extended reality applications in aviation. In: Chen, J.Y.C., Fragomeni, G., (Eds.) Virtual, Augmented and Mixed Reality: Applications in Education, Aviation and Industry, pp. 270–288. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06015-1_19

  13. Renganayagalu, S.K., Mallam, S.C., Nazir, S.: Effectiveness of VR head mounted displays in professional training: a systematic review. Technol. Knowl. Learn. 26(4), 999–1041 (2021). https://doi.org/10.1007/s10758-020-09489-9

  14. Oberhauser, M., Dreyer, D., Convard, T., Mamessier, S.: Rapid integration and evaluation of functional HMI components in a virtual reality aircraft cockpit, vol. 485, pp. 17–24 (2016)

    Google Scholar 

  15. Oberhauser, M., Dreyer, D.: A virtual reality flight simulator for human factors engineering. Cogn. Technol. Work 19(2–3), 263–277 (2017). https://doi.org/10.1007/s10111-017-0421-7

    Article  Google Scholar 

  16. Oberhauser, M., Dreyer, D., Braunstingl, R., Koglbauer, I.: What’s real about virtual reality flight simulation? Aviat. Psychol. Appl. Human Factors 8(1), 22–34 (2018). https://doi.org/10.1027/2192-0923/a000134

    Article  Google Scholar 

  17. Auer, S., Gerken, J., Reiterer, H., Jetter, H.-C.: Comparison between virtual reality and physical flight simulators for cockpit familiarization, pp. 378–392 (2021). https://doi.org/10.1145/3473856.3473860

  18. Luo, H., Li, G., Feng, Q., Yang, Y., Zuo, M.: Virtual reality in K-12 and higher education: a systematic review of the literature from 2000 to 2019. J. Comput. Assist. Learn. 37(3), 887–901 (2021). https://doi.org/10.1111/jcal.12538

    Article  Google Scholar 

  19. Jensen, L., Konradsen, F.: A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 23(4), 1515–1529 (2017). https://doi.org/10.1007/s10639-017-9676-0

    Article  Google Scholar 

  20. Buttussi, F., Chittaro, L.: Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans. Visual Comput. Graph. 24(2), 1063–1076 (2018). https://doi.org/10.1109/TVCG.2017.2653117

    Article  Google Scholar 

  21. Kaplan, A.D., Cruit, J., Endsley, M., Beers, S.M., Sawyer, B.D., Hancock, P.A.: The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: a meta-analysis. Hum Factors 63(4), 706–726 (2021). https://doi.org/10.1177/0018720820904229

    Article  Google Scholar 

  22. Hancock, P.A., Hoffman, R.R.: Keeping up with intelligent technology. IEEE Intell. Syst. 30(1), 62–65 (2015). https://doi.org/10.1109/MIS.2015.13

    Article  Google Scholar 

  23. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B 364(1535), 3549–3557 (2009). https://doi.org/10.1098/rstb.2009.0138

    Article  Google Scholar 

  24. Skarbez, R., Brooks, J.F., Whitton, M.: A survey of presence and related concepts. ACM Comput. Surv. (CSUR) 50(6), 1–39 (2018). https://doi.org/10.1145/3134301

    Article  Google Scholar 

  25. Alexander, A., Brunyé, T., Sidman, J., Weil, S.: From Gaming to Training: A Review of Studies on Fidelity, Immersion, Presence, and Buy-in and Their Effects on Transfer in PC-Based Simulations and Games. 01 Jan 2005

    Google Scholar 

  26. Slater, M., Khanna, P., Mortensen, J., Insu, Y.: Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput. Graph. Appl. 29(3), 76–84 (2009). https://doi.org/10.1109/MCG.2009.55

    Article  Google Scholar 

  27. Schwind, V., Knierim, P., Haas, N., Henze, N.: Using Presence Questionnaires in Virtual Reality (2019)

    Google Scholar 

  28. Ragan, E.D., Bowman, D.A., Kopper, R., Stinson, C., Scerbo, S., McMahan, R.P.: Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Trans. Visual Comput. Graph. 21(7), 794–807 (2015). https://doi.org/10.1109/TVCG.2015.2403312

    Article  Google Scholar 

  29. Slater, M.: How colorful was your day? Why questionnaires cannot assess presence in virtual environments. Presence: Teleoper. Virtual Environ. 13(4), 484–493 (2004)

    Google Scholar 

  30. Wallis, G., Tichon, J., Mildred, T.: Speed perception as an objective measure of presence in virtual environments (2007)

    Google Scholar 

  31. Wallis, G., Tichon, J.: Predicting the efficacy of simulator-based training using a perceptual judgment task versus questionnaire-based measures of presence. Presence Teleoper. Virtual Environ. 22(1), 67–85 (2013). https://doi.org/10.1162/PRES_a_00135

    Article  Google Scholar 

  32. Usoh, M., Catena, E., Arman, S., Slater, M.: Using presence questionnaires in reality. Presence Teleoper. Virtual Environ. 9(5), 497–503 (2000). https://doi.org/10.1162/105474600566989

    Article  Google Scholar 

  33. Bridgeman, B., Van der Heijden, A.H.C., Velichkovsky, B.M.: A theory of visual stability across saccadic eye movements. Behav. Brain Sci. 17(2), 247–258 (1994). https://doi.org/10.1017/S0140525X00034361

    Article  Google Scholar 

  34. Noë, A.: Action in perception/Alva Noë. MIT Press, Cambridge (2004)

    Google Scholar 

  35. Kelly, J., McNamara, T.: Spatial memories of virtual environments: how egocentric experience, intrinsic structure, and extrinsic structure interact. Psychon. Bull. Rev. 15(2), 322–327 (2008). https://doi.org/10.3758/PBR.15.2.322

    Article  Google Scholar 

  36. McNamara, T.P., Rump, B., Werner, S.: Egocentric and geocentric frames of reference in memory of large-scale space. Psychonom. Bull. Rev. 10(3), 589–595 (2003). https://doi.org/10.3758/BF03196519

  37. Wallis, G.M., Backus, B.T.: When action conditions perception: evidence of cross-modal cue recruitment. J. Vis. 16(14), 6 (2016). https://doi.org/10.1167/16.14.6

    Article  Google Scholar 

  38. Ragan, E.D.: The effects of higher levels of immersion on procedure memorization performance and implications for educational virtual environments. Presence 19(6), 527–543 (2010). https://doi.org/10.1162/pres_a_00016

    Article  Google Scholar 

  39. Shelton, A.L., McNamara, T.P.: Systems of spatial reference in human memory. Cogn. Psychol. 43(4), 274–310 (2001). https://doi.org/10.1006/cogp.2001.0758

    Article  Google Scholar 

  40. Draschkow, D., Wolfe, J.M., Võ, M.L.H.: Seek and you shall remember: scene semantics interact with visual search to build better memories. J. Vis. 14(8), 10 (2014). https://doi.org/10.1167/14.8.10

    Article  Google Scholar 

  41. Saredakis, D., Szpak, A., Birckhead, B., Keage, H.A.D., Rizzo, A., Loetscher, T.: Factors associated with virtual reality sickness in head-mounted displays: a systematic review and meta-analysis. Front Hum Neurosci 14, 96 (2020). https://doi.org/10.3389/fnhum.2020.00096

    Article  Google Scholar 

  42. Tran, T., Shin, H., Stuerzlinger, W., Han, J.: Effects of virtual arm representations on interaction in virtual environments, vol. 131944, pp. 1–9 (2017)

    Google Scholar 

  43. Knuth, D.E.: The art of Computer Programming. 3rd edn. Addison Wesley (1997)

    Google Scholar 

  44. AMD Ryzen 9 5900X CPU. https://www.amd.com/en/products/cpu/amd-ryzen-9-5900x. Accessed 7 Jan 2023

  45. Nvidia RTX 3900 Video Card. https://www.nvidia.com/en-au/geforce/graphics-cards/30-series/rtx-3090-3090ti/. Accessed 7 Jan 2023

  46. "Varjo XR-3. https://varjo.com/products/xr-3/. Accessed 7 Jan 2023

  47. V. Software: Valve Index Base Stations. https://www.valvesoftware.com/en/index/base-stations. Accessed 7 Jan 2023

  48. Valve Index Controllers. https://www.valvesoftware.com/en/index/controllers. Accessed 8 Jan 2023

  49. Moraru, D., Boiangiu, C.-A.: Seeing without eyes: Visual sensory substitution. J. Inf. Syst. Oper. Manage. 9(2), L1 (2015)

    Google Scholar 

  50. Venini, D.W.: Visual sensory substitution: initial testing of a custom built visual to tactile device. In: Venini, D.W., (ed.) (2018)

    Google Scholar 

  51. Epic Games Unreal Engine 5. https://www.unrealengine.com/en-US/unreal-engine-5. Accessed 7 Jan 2023

  52. Igroup Presence Questionnaire overview. https://www.igroup.org/pq/ipq/index.php. Accessed 8 Jan 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leighton Carr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carr, L., Wallis, G., Perry, N., Riek, S. (2023). Spatial Learning in a Virtual Reality Boeing 737NG Flight Deck. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2023. Lecture Notes in Computer Science(), vol 14018. Springer, Cham. https://doi.org/10.1007/978-3-031-35389-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35389-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35388-8

  • Online ISBN: 978-3-031-35389-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics