Skip to main content

A 7-Day Space Habitat Simulated Task: Using a Projection-Based Natural Environment to Improve Psychological Health in Short-Term Isolation Confinement

  • Conference paper
  • First Online:
Engineering Psychology and Cognitive Ergonomics (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14017))

Included in the following conference series:

  • 743 Accesses

Abstract

Due to prolonged missions in isolated, enclosed, and extreme (ICE) environments, astronauts are exposed to complex stressors that can easily negatively impact psychological states, increase the risk of undesirable behaviors, and jeopardize mission success. Yet long-term journeys will limit the use of existing psychological countermeasures. We are concerned about the long-term mental health of astronauts, and for this reason, we conducted a 7-day controlled experiment in Xiangtan Central Hospital, conducting an isolation simulation to compare the effectiveness of a projection-based virtual natural environment for psychological interventions. 20 participants (10 males and 10 females) were randomized into two groups: the intervention group was exposed to an environment with virtual natural environment projections, and the control group maintained a monotonous indoor environment. Changes in participants’ anxiety levels before and after the experiment, as well as their positive and negative emotional states on days 1, 4, and 7, were recorded. The results of the study showed that negative emotions and anxiety continued to increase and positive emotions decreased over time for all participants. However, differences between groups suggest that a natural environment based on projections can be effective in reducing negative mental states in solitary confinement states. This paper will help inform habitat habitability design and psychological responses in future long-term missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Messina, P., Vennemann, D.: The European space exploration programme: current status of ESA’s plans for Moon and Mars exploration. Acta Astronaut. 57(2), 156–160 (2005)

    Article  Google Scholar 

  2. Board, S.S., Council, N.R.: Vision and voyages for planetary science in the decade 2013–2022. National Academies Press (2012)

    Google Scholar 

  3. Morphew, E.: Psychological and human factors in long duration spaceflight. McGill J. Med. 6(1) (2001)

    Google Scholar 

  4. Zwart, S.R., et al.: The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci. Biobehav. Rev. 127, 307–331 (2021)

    Article  Google Scholar 

  5. Kanas, N., Manzey, D.: Space Psychology and Psychiatry, vol. 16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-6770-9

  6. Ball, J.R., Evans Jr., C.H.: Medicine IO: Safe Passage: Astronaut Care for Exploration Missions, VOL. 317. The National Academies Press, Washington, DC (2001)

    Google Scholar 

  7. Vakoch, D.A.: On Orbit and Beyond: Psychological Perspectives on Human Spaceflight. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30583-2

  8. Geuna, S., Brunelli, F., Perino, M.A.: Stressors, stress and stress consequences during long-duration manned space missions: a descriptive model. Acta Astronaut. 36(6), 347–356 (1995)

    Article  Google Scholar 

  9. Chouker, A.: Stress Challenges and Immunity in Space. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-030-16996-1

  10. Palinkas, L.A.: Psychosocial issues in long-term space flight: overview. Gravit Space Biol Bull 14(2), 25–33 (2001)

    Google Scholar 

  11. Landon, L.B.: Risk of Performance and Behavioral Health Decrements Due to Inadequate Cooperation, Coordination, and Psychosocial Adaptions within a Team (2022)

    Google Scholar 

  12. Salamon, N., et al.: Application of virtual reality for crew mental health in extended-duration space missions. Acta Astronaut. 146, 117–122 (2018)

    Article  Google Scholar 

  13. Robinson, J.A., et al.: Patterns in crew-initiated photography of Earth from the ISS: Is earth observation a salutogenic experience? In: On orbit and Beyond, pp. 51–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30583-2_3

  14. Kelly, A.D., Kanas, N.: Communication between space crews and ground personnel: a survey of astronauts and cosmonauts. In: Aviation, Space, and Environmental Medicine (1993)

    Google Scholar 

  15. Jiang, A.O.: Effects of colour environment on spaceflight cognitive abilities during short-term simulations of three gravity states (Doctoral dissertation, University of Leeds) (2022)

    Google Scholar 

  16. Sandal, G.M., et al., Psychological reactions during polar expeditions and isolation in hyperbaric chambers. Aviation, Space, and Environmental Medicine, 1996

    Google Scholar 

  17. Peldszus, R., et al.: The perfect boring situation—addressing the experience of monotony during crewed deep space missions through habitability design. Acta Astronaut. 94(1), 262–276 (2014)

    Article  Google Scholar 

  18. Gatti, M., et al.: Affective health and countermeasures in long-duration space exploration. Heliyon 8(5), e09414 (2022)

    Article  Google Scholar 

  19. Kahn Jr, P.H., Kellert, S.R.: Children and Nature: Psychological, Sociocultural, and Evolutionary Investigations. MIT press, Cambridge (2002)

    Google Scholar 

  20. Gong, Y., et al: Effects of intensity of short-wavelength light on the eeg and performance of astronauts during target tracking. In: Harris, D., Li, W.-C. (eds.) Engineering Psychology and Cognitive Ergonomics: 19th International Conference, EPCE 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings, pp. 279–289. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06086-1_21

    Chapter  Google Scholar 

  21. Berto, R.: The role of nature in coping with psycho-physiological stress: a literature review on restorativeness. Behav. Sci. 4(4), 394–409 (2014)

    Article  Google Scholar 

  22. Kaplan, S.: The restorative benefits of nature: toward an integrative framework. J. Environ. Psychol. 15(3), 169–182 (1995)

    Article  Google Scholar 

  23. Ulrich, C., Nadkarni, N.M.: Sustainability research and practices in enforced residential institutions: collaborations of ecologists and prisoners. Environ. Dev. Sustain. 11(4), 815–832 (2009)

    Article  Google Scholar 

  24. Jiang, A., et al.: Short-term virtual reality simulation of the effects of space station colour and microgravity and lunar gravity on cognitive task performance and emotion. Build. Environ. 227, 109789 (2023)

    Article  Google Scholar 

  25. Jiang, A., Yao, X., Westland, S., Hemingray, C., Foing, B., Lin, J.: The effect of correlated colour temperature on physiological, emotional and subjective satisfaction in the hygiene area of a space station. Int. J. Environ. Res. Public Health 19(15), 9090 (2022)

    Article  Google Scholar 

  26. Ratcliffe, E.: Sound and soundscape in restorative natural environments: a narrative literature review. Front. Psychol. 12, 963 (2021)

    Article  Google Scholar 

  27. Jiang, A., et al.: Space Habitat Astronautics: Multicolour Lighting Psychology in a 7-Day Simulated Habitat. Space: Science & Technology (2022)

    Google Scholar 

  28. Beery, T., Jørgensen, K.A.: Children in nature: sensory engagement and the experience of biodiversity. Environ. Educ. Res. 24(1), 13–25 (2018)

    Article  Google Scholar 

  29. Qiu, M., Sha, J., Utomo, S.: Listening to forests: comparing the perceived restorative characteristics of natural soundscapes before and after the COVID-19 Pandemic. Sustainability 13(1), 293 (2020)

    Article  Google Scholar 

  30. Zimmermann, M.: The nervous system in the context of information theory, in human physiology. In: Schmidt, R.F., Thews, G. (eds.) Human Physiology, pp. 166–173. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-73831-9_7

  31. Franco, L.S., Shanahan, D.F., Fuller, R.A.: A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14(8), 864 (2017)

    Article  Google Scholar 

  32. Kun, Y., Jiang, A., Zeng, X., Wang, J., Yao, X., Chen, Y.: Colour design method of ship centralized control cabin. In: Stanton, N. (ed.) AHFE 2021. LNNS, vol. 270, pp. 495–502. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80012-3_57

    Chapter  Google Scholar 

  33. Grinde, B., Patil, G.G.: Biophilia: does visual contact with nature impact on health and well-being? Int. J. Environ. Res. Public Health 6(9), 2332–2343 (2009)

    Article  Google Scholar 

  34. Ulrich, R.S., et al.: Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 11(3), 201–230 (1991)

    Article  MathSciNet  Google Scholar 

  35. Nadkarni, N.M., et al.: Impacts of nature imagery on people in severely nature-deprived environments. Front. Ecol. Environ. 15(7), 395–403 (2017)

    Article  Google Scholar 

  36. Kun, Y., Jiang, A., Wang, J., Zeng, X., Yao, X., Chen, Y.: Construction of crew visual behaviour mechanism in ship centralized control cabin. In: Stanton, N. (ed.) Advances in Human Aspects of Transportation: Proceedings of the AHFE 2021 Virtual Conference on Human Aspects of Transportation, July 25-29, 2021, USA, pp. 503–510. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-80012-3_58

    Chapter  Google Scholar 

  37. Lohr, V.I., Pearson-Mims, C.H., Goodwin, G.K.: Interior plants may improve worker productivity and reduce stress in a windowless environment. J. Environ. Hortic. 14(2), 97–100 (1996)

    Article  Google Scholar 

  38. Soga, M., et al.: A room with a green view: the importance of nearby nature for mental health during the COVID-19 pandemic. Ecol. Appl. 31(2), e2248 (2021)

    Article  Google Scholar 

  39. Shizhu, L., et al.: Effects and challenges of operational lighting illuminance in spacecraft on human visual acuity. In: Stanton, N. (ed.) AHFE 2021. LNNS, vol. 270, pp. 582–588. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80012-3_67

    Chapter  Google Scholar 

  40. Arquilla, K., Webb, A.K., Anderson, A.P.: Isolation and confinement due to the COVID-19 pandemic: lessons for human spaceflight. Acta Astronaut. 196, 282–289 (2022)

    Article  Google Scholar 

  41. Rivolier, J., Bachelard, C., Cazes, G.: Crew selection for an Antarctic-based space simulator. In: Harrison, A.A., Clearwater, Y.A., McKay, C.P. (eds.) From Antarctica to outer space, pp. 291–296. Springer, New York, NY (1991). https://doi.org/10.1007/978-1-4612-3012-0_27

    Chapter  Google Scholar 

  42. Webber, D.: Space tourism–essential step in human settlement of space. In: 63rd International Astronautical Congress (2012)

    Google Scholar 

  43. Jiang, A., Yao, X., Hemingray, C., Westland, S.: Young people’s colour preference and the arousal level of small apartments. Color. Res. Appl. 47(3), 783–795 (2022)

    Article  Google Scholar 

  44. Ruyters, G., Braun, M.: Plant biology in space: recent accomplishments and recommendations for future research. Plant Biol. 16, 4–11 (2014)

    Article  Google Scholar 

  45. Porterfield, D.M., et al.: Spaceflight hardware for conducting plant growth experiments in space: the early years 1960–2000. Adv. Space Res. 31(1), 183–193 (2003)

    Article  Google Scholar 

  46. Koçkaya, E.S., Cemal, U.: Life of plants in space: a challenging mission for tiny greens in an everlasting darkness. Havacılık ve Uzay Çalışmaları Dergisi 2(2), 1–23 (2022)

    Google Scholar 

  47. Jiang, A., Foing, B.H., Schlacht, I.L., Yao, X., Cheung, V., Rhodes, P.A.: Colour schemes to reduce stress response in the hygiene area of a space station: a Delphi study. Appl. Ergon. 98, 103573 (2022)

    Article  Google Scholar 

  48. Meinen, E., et al.: Growing fresh food on future space missions: environmental conditions and crop management. Sci. Hortic. 235, 270–278 (2018)

    Article  Google Scholar 

  49. Oluwafemi, F.A., et al.: Space food and nutrition in a long term manned mission. Adv. Astron. Sci. Technol. 1(1), 1–21 (2018)

    Article  Google Scholar 

  50. Dueck, T., et al. Choosing crops for cultivation in space. In: 46th International Conference on Environmental Systems (2016)

    Google Scholar 

  51. Zabel, P., et al.: Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 10, 1–16 (2016)

    Article  Google Scholar 

  52. Haeuplik-Meusburger, S., et al.: Greenhouses and their humanizing synergies. Acta Astronaut. 96, 138–150 (2014)

    Article  Google Scholar 

  53. Jiang, A., Yao, X., Schlacht, I.L., Musso, G., Tang, T., Westland, S.: Habitability study on space station colour design. In: Stanton, N. (ed.) AHFE 2020. AISC, vol. 1212, pp. 507–514. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50943-9_64

  54. Valtchanov, D., Barton, K.R., Ellard, C.: Restorative effects of virtual nature settings. Cyberpsychol. Behav. Soc. Netw. 13(5), 503–512 (2010)

    Article  Google Scholar 

  55. Bannova, O., Camba, J.D., Bishop, S.: Projection-based visualization technology and its design implications in space habitats. Acta Astronaut. 160, 310–316 (2019)

    Article  Google Scholar 

  56. Nukarinen, T., et al.: Measures and modalities in restorative virtual natural environments: an integrative narrative review. Comput. Hum. Behav. 126, 107008 (2022)

    Article  Google Scholar 

  57. Lockard, E., Kaufman,: Bringing nature into space: the restorative potential of virtual environments for long term space travel. In: 49th International Conference on Environmental Systems (2019)

    Google Scholar 

  58. Lyons, K.D., et al.: Autonomous psychological support for isolation and confinement. Aeros. Med. Hum. Perf. 91(11), 876–885 (2020)

    Article  Google Scholar 

  59. Bishop, S., et al.: The bionomic design and mixed reality as passive countermeasures in terrestrial analogs and extraterrestrial habitats. In: 2020 International Conference on Environmental Systems (2020)

    Google Scholar 

  60. Botella, C., et al.: Psychological countermeasures in manned space missions: “EARTH” system for the Mars-500 project. Comput. Hum. Behav. 55, 898–908 (2016)

    Article  Google Scholar 

  61. Anderson, A., et al.: Natural scene virtual reality as a behavioral health countermeasure in isolated, confined, and extreme environments: three isolated, confined, extreme analog case studies. In: Human Factors, p. 00187208221100693 (2022)

    Google Scholar 

  62. Abbott, R., Diaz-Artiles, A.: The impact of digital scents on behavioral health in a restorative virtual reality environment. Acta Astronaut. 197, 145–153 (2022)

    Article  Google Scholar 

  63. Gushin, V., et al.: Prospects for psychological support in interplanetary expeditions. Front. Physiol. 12, 750414 (2021). https://doi.org/10.3389/fphys.2021.750414

    Article  Google Scholar 

  64. Bishop, S., et al.: Bionomic design countermeasures for enhancing cognitive and psychological functioning and crew performance in isolated and confined habitats. In: 46th International Conference on Environmental Systems (2016)

    Google Scholar 

  65. Ishihara, S.: Test for colour-blindness. Kanehara Tokyo, Japan (1987)

    Google Scholar 

  66. Jiang, A., Zhu, Y., Yao, X., Foing, B.H., Westland, S., Hemingray, C.: The effect of three body positions on colour preference: an exploration of microgravity and lunar gravity simulations. Acta Astronaut. 204, 1–10 (2023)

    Article  Google Scholar 

  67. Honeyborne, J., Brownlow, M.: Blue planet II. Random House (2017)

    Google Scholar 

  68. Dunn, M.E., Mills, M., Veríssimo, D.: Evaluating the impact of the documentary series Blue Planet II on viewers’ plastic consumption behaviors. Conser. Sci. Pract. 2(10), e280 (2020)

    Google Scholar 

  69. Yeo, N.L., et al.: What is the best way of delivering virtual nature for improving mood? an experimental comparison of high definition TV, 360 degrees video, and computer generated virtual reality. J Environ Psychol 72, 101500 (2020)

    Article  Google Scholar 

  70. Spielberger, C., et al.: Manual for the Stait-Trait Anxiety Inventory Consulting. Psychologists Press, Palo Alto (1983)

    Google Scholar 

  71. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54(6), 1063 (1988)

    Article  Google Scholar 

  72. Missions, C.D.L.-D.S. and M. Kanas, PSYCHOLOGY AND CULTURE DURING LONG-DURATION SPACE MISSIONS. 2007

    Google Scholar 

  73. de Kort, Y.A.W., et al.: What’s wrong with virtual trees? restoring from stress in a mediated environment. J. Environ. Psychol. 26(4), 309–320 (2006)

    Article  Google Scholar 

  74. Amirbeiki, F., Ghasr, A.K.: Investigating the effects of exposure to natural blue elements on the psychological restoration of university studentsity students. Iran Univ. Sci. Technol. 30(1), 1–10 (2020)

    Google Scholar 

  75. White, M., et al.: Blue space: the importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J. Environ. Psychol. 30(4), 482–493 (2010)

    Article  Google Scholar 

  76. Tao, S., et al.: Associations of circadian rhythm abnormalities caused by home quarantine during the COVID-19 outbreak and mental health in Chinese undergraduates: evidence from a nationwide school-based survey. Available at SSRN 3582851 (2020)

    Google Scholar 

  77. Hashimoto, S., et al.: Melatonin rhythm is not shifted by lights that suppress nocturnal melatonin in humans under entrainment. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 270(5), R1073–R1077 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, X., Jiang, A. (2023). A 7-Day Space Habitat Simulated Task: Using a Projection-Based Natural Environment to Improve Psychological Health in Short-Term Isolation Confinement. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2023. Lecture Notes in Computer Science(), vol 14017. Springer, Cham. https://doi.org/10.1007/978-3-031-35392-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35392-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35391-8

  • Online ISBN: 978-3-031-35392-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics