Skip to main content

Zero-Shot Entity Typing in Knowledge Graphs

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2023 International Workshops (DASFAA 2023)

Abstract

Knowledge graphs are often highly incomplete due to their large sizes and one major task for knowledge graph completion is entity typing, that is to predict missing types of entities or vice versa. It is especially challenging to perform entity typing when the type is new, i.e., unseen during training, which is known as the zero-shot entity typing problem. Existing entity typing models cannot handle the zero-shot case as it requires the models to be retrained to embed the unseen types, and other zero-shot knowledge graph completion approaches cannot be applied to the entity typing task either. In this paper, we propose a novel zero-shot entity typing approach based on a generation architecture, and introduce a novel feature distribution and semantic encoding method that combines both ontological and textual knowledge. We also construct the first zero-shot entity typing datasets based on commonly used benchmarks. Our experiment evaluation shows the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems 26 (2013)

    Google Scholar 

  3. Chen, Z., Chen, J., Geng, Y., Pan, J.Z., Yuan, Z., Chen, H.: Zero-shot visual question answering using knowledge graph. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 146–162. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_9

    Chapter  Google Scholar 

  4. Elsahar, H., Gravier, C., Laforest, F.: Zero-shot question generation from knowledge graphs for unseen predicates and entity types. arXiv preprint arXiv:1802.06842 (2018)

  5. Ge, X., Wang, Y.C., Wang, B., Kuo, C.J.: Core: a knowledge graph entity type prediction method via complex space regression and embedding. Pattern Recogn. Lett. 157, 97–103 (2022)

    Article  Google Scholar 

  6. Geng, Y., et al.: OntoZSL: ontology-enhanced zero-shot learning. In: Proceedings of the Web Conference 2021, pp. 3325–3336 (2021)

    Google Scholar 

  7. Geng, Y., Chen, J., Chen, Z., Pan, J.Z., Yuan, Z., Chen, H.: K-ZSL: resources for knowledge-driven zero-shot learning. arXiv preprint arXiv:2106.15047 (2021)

  8. Gesese, G.A., Biswas, R., Alam, M., Sack, H.: A survey on knowledge graph embeddings with literals: Which model links better literal-ly? Semantic Web 12(4), 617–647 (2021)

    Article  Google Scholar 

  9. Hao, J., Chen, M., Yu, W., Sun, Y., Wang, W.: Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1709–1719 (2019)

    Google Scholar 

  10. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic web 6(2), 167–195 (2015)

    Article  Google Scholar 

  11. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  12. Pan, W., Wei, W., Mao, X.L.: Context-aware entity typing in knowledge graphs. arXiv preprint arXiv:2109.07990 (2021)

  13. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  14. Qin, P., Wang, X., Chen, W., Zhang, C., Xu, W., Wang, W.Y.: Generative adversarial zero-shot relational learning for knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8673–8680 (2020)

    Google Scholar 

  15. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  16. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  17. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 2335–2344 (2014)

    Google Scholar 

  18. Zhao, Y., Zhang, A., Xie, R., Liu, K., Wang, X.: Connecting embeddings for knowledge graph entity typing. arXiv preprint arXiv:2007.10873 (2020)

  19. Zhao, Y., Zhou, H., Zhang, A., Xie, R., Li, Q., Zhuang, F.: Connecting embeddings based on multiplex relational graph attention networks for knowledge graph entity typing. IEEE Trans. Knowl. Data Eng. 35, 4608–4620 (2022)

    Google Scholar 

  20. Zhu, G., Zhang, Z., Su, S.: Few-shot knowledge graph entity typing. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. LNCS, vol. 13280. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05933-9_26

  21. Zhuo, J., Zhu, Q., Yue, Y., Zhao, Y., Han, W.: A neighborhood-attention fine-grained entity typing for knowledge graph completion. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1525–1533 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under grant 61976153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengye Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, S., Wang, Z., Wang, K., Zhuang, Z. (2023). Zero-Shot Entity Typing in Knowledge Graphs. In: El Abbadi, A., et al. Database Systems for Advanced Applications. DASFAA 2023 International Workshops. DASFAA 2023. Lecture Notes in Computer Science, vol 13922. Springer, Cham. https://doi.org/10.1007/978-3-031-35415-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35415-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35414-4

  • Online ISBN: 978-3-031-35415-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics