Skip to main content

Data-Augmented Counterfactual Learning for Bundle Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2023 International Workshops (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13922))

Included in the following conference series:

  • 675 Accesses

Abstract

Bundle Recommendation (BR) aims at recommending bundled items on online content or e-commerce platform, such as song lists or book lists. Several graph-based models have achieved state-of-the-art performance on BR task. But their performance is still sub-optimal, since the data sparsity problem tends to be more severe in real BR scenarios, which limits these models from more sufficient learning. In this paper, we propose a novel graph learning paradigm called Counterfactual Learning for Bundle Recommendation (CLBR) to mitigate the impact of data sparsity problem and improve BR by introducing counterfactual thinking. Our paradigm consists of two main parts: counterfactual data augmentation and counterfactual constraint. In counterfactual data augmentation, we design a heuristic sampler to generate counterfactual graph views for graph-based models to alleviate the data sparsity. We further propose counterfactual loss to constrain model learning for mitigating the effects of noise in augmented data and achieving more sufficient model optimization. Further theoretical analysis demonstrates the rationality of our design. Extensive experiments of BR models applied with our paradigm on two real-world datasets are conducted to verify the effectiveness of the paradigm.

S. Zhu and Q. Shen—Both authors contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.youshu.com/.

References

  1. Abbasnejad, E., Teney, D., Parvaneh, A., Shi, J., Hengel, A.V.D.: Counterfactual vision and language learning. In: CVPR, pp. 10044–10054 (2020)

    Google Scholar 

  2. Berg, R.V.D., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017)

  3. Cao, D., Nie, L., He, X., Wei, X., Zhu, S., Chua, T.S.: Embedding factorization models for jointly recommending items and user generated lists. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 585–594 (2017)

    Google Scholar 

  4. Cao, D., Nie, L., He, X., Wei, X., Zhu, S., Chua, T.S.: Embedding factorization models for jointly recommending items and user generated lists. In: SIGIR (2017)

    Google Scholar 

  5. Chang, J., Gao, C., He, X., Jin, D., Li, Y.: Bundle recommendation with graph convolutional networks. In: SIGIR, pp. 1673–1676 (2020)

    Google Scholar 

  6. Chen, L., Liu, Y., He, X., Gao, L., Zheng, Z.: Matching user with item set: Collaborative bundle recommendation with deep attention network. In: IJCAI (2019)

    Google Scholar 

  7. Deng, Q., et al.: Build your own bundle - a neural combinatorial optimization method (2021)

    Google Scholar 

  8. Deng, Q., et al.: Personalized bundle recommendation in online games. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (2020)

    Google Scholar 

  9. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: ICML, vol. 97, pp. 2376–2384 (2019)

    Google Scholar 

  10. Li, X., Wang, X., He, X., Chen, L., Xiao, J., Chua, T.S.: Hierarchical fashion graph network for personalized outfit recommendation. In: SIGIR, pp. 159–168 (2020)

    Google Scholar 

  11. Liu, G., Fu, Y., Chen, G., Xiong, H., Chen, C.: Modeling buying motives for personalized product bundle recommendation. TKDD 11(3), 1–26 (2017)

    Google Scholar 

  12. Liu, Y., Xie, M., Lakshmanan, L.V.: Recommending user generated item lists. In: RecSys, pp. 185–192 (2014)

    Google Scholar 

  13. Ma, Y., He, Y., Zhang, A., Wang, X., Chua, T.S.: Crosscbr: cross-view contrastive learning for bundle recommendation. arXiv preprint arXiv:2206.00242 (2022)

  14. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  15. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  16. Sar Shalom, O., Koenigstein, N., Paquet, U., Vanchinathan, H.P.: Beyond collaborative filtering: the list recommendation problem. In: WWW, pp. 63–72 (2016)

    Google Scholar 

  17. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  18. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  19. Sui, Y., Wang, X., Wu, J., He, X., Chua, T.S.: Deconfounded training for graph neural networks. arXiv preprint arXiv:2112.15089 (2021)

  20. Wang, W., Feng, F., He, X., Zhang, H., Chua, T.S.: Clicks can be cheating: counterfactual recommendation for mitigating clickbait issue. In: SIGIR (2021)

    Google Scholar 

  21. Wang, Z., Zhang, J., Xu, H., Chen, X., Zhang, Y., et al.: Counterfactual data-augmented sequential recommendation. In: SIGIR, pp. 347–356 (2021)

    Google Scholar 

  22. Xiong, K., et al.: Counterfactual review-based recommendation. In: CIKM, pp. 2231–2240 (2021)

    Google Scholar 

  23. Xu, S., Ge, Y., Li, Y., Fu, Z., Chen, X., Zhang, Y.: Causal collaborative filtering. arXiv preprint arXiv:2102.01868 (2021)

  24. Yuan, X., Chen, H., Song, Y., Zhao, X., Ding, Z., et al.: Improving sequential recommendation consistency with self-supervised imitation. In: IJCAI (2021)

    Google Scholar 

  25. Zhang, J., Chen, X., Zhao, W.X.: Causally attentive collaborative filtering. In: CIKM, pp. 3622–3626 (2021)

    Google Scholar 

  26. Zhang, S., Yao, D., Zhao, Z., Chua, T.S., Wu, F.: Causerec: counterfactual user sequence synthesis for sequential recommendation. In: SIGIR, pp. 367–377 (2021)

    Google Scholar 

  27. Zhang, Y., et al.: Causal intervention for leveraging popularity bias in recommendation. In: SIGIR (2021)

    Google Scholar 

  28. Zhu, T., Harrington, P., Li, J., Tang, L.: Bundle recommendation in ecommerce. In: SIGIR, pp. 657–666 (2014)

    Google Scholar 

  29. Zmigrod, R., Mielke, S.J., Wallach, H., Cotterell, R.: Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. arXiv preprint arXiv:1906.04571 (2019)

Download references

Acknowledgments

The work is partially supported by the National Nature Science Foundation of China (No. 61976160, 61906137, 61976158, 62076184, 62076182), the Natural Science Foundation of Shanghai (Grant No. 22ZR1466700), Shanghai Science and Technology Plan Project (No. 21DZ1204800) and Technology research plan project of Ministry of Public and Security (No. 2020JSYJD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S. et al. (2023). Data-Augmented Counterfactual Learning for Bundle Recommendation. In: El Abbadi, A., et al. Database Systems for Advanced Applications. DASFAA 2023 International Workshops. DASFAA 2023. Lecture Notes in Computer Science, vol 13922. Springer, Cham. https://doi.org/10.1007/978-3-031-35415-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35415-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35414-4

  • Online ISBN: 978-3-031-35415-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics