Abstract
Fake news commonly exists in various domains (e.g., education, health, finance), especially on the Internet, which cost people much time and money to distinguish. Recently, previous researchers focused on fake new detection with the help of a single domain label because fake news has different features in different domains. However, one problem is still solved: A piece of news may have semantics even in one domain source and these meanings have some interactions with other domains. Therefore, detecting fake news with only one domain may lose the contextual semantics of global sources (e.g., more domains). To address this, we propose a novel model, FuzzyNet, which addresses the limitations above by introducing the fuzzy mechanism. Specially, we use BERT and mixture-of-expert networks to extract various features of input news sentences; Then, we use domain-wise attention to make the sentence embedding more domain-aware; Next, we employ attention gate to extract the domain embedding to affect the weight of corresponding expert’s result; Moreover, we design a fuzzy mechanism to generate pseudo domains. Finally, the discriminator module uses the total feature representation to discriminate whether the news item is fake news. We conduct our experiment on the Weibo21 dataset and the experimental results show that our model outperforms the baselines. The code is open at https://anonymous.4open.science/r/fakenewsdetection-D2F4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Reddit. https://reddit.com/
Sina weibo. http://www.weibo.com
Tencent rumor government report. https://tech.qq.com/a/20171220/026316.html
Twitter. http://www.twitter.com
Ajao, O., Bhowmik, D., Zargari, S.: Sentiment aware fake news detection on online social networks. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2507–2511. IEEE (2019)
Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684 (2011)
Chen, Y.: Convolutional neural network for sentence classification. Master’s thesis, University of Waterloo (2015)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Cui, L., Lee, D.: Coaid: Covid-19 healthcare misinformation dataset. arXiv preprint arXiv:2006.00885 (2020)
Da, K.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Dai, E., Sun, Y., Wang, S.: Ginger cannot cure cancer: battling fake health news with a comprehensive data repository. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 14, pp. 853–862 (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)
Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2019)
Guo, H., Cao, J., Zhang, Y., Guo, J., Li, J.: Rumor detection with hierarchical social attention network. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 943–951 (2018)
Hakak, S., Alazab, M., Khan, S., Gadekallu, T.R., Maddikunta, P.K.R., Khan, W.Z.: An ensemble machine learning approach through effective feature extraction to classify fake news. Futur. Gener. Comput. Syst. 117, 47–58 (2021)
Hangloo, S., Arora, B.: Fake news detection tools and methods-a review. arXiv preprint arXiv:2112.11185 (2021)
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)
Jin, Z., Cao, J., Guo, H., Zhang, Y., Luo, J.: Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 795–816 (2017)
Jin, Z., Cao, J., Guo, H., Zhang, Y., Wang, Yu., Luo, J.: Detection and analysis of 2016 US presidential election related rumors on Twitter. In: Lee, D., Lin, Y.-R., Osgood, N., Thomson, R. (eds.) SBP-BRiMS 2017. LNCS, vol. 10354, pp. 14–24. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60240-0_2
Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1103–1108. IEEE (2013)
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Ma, B., Lin, D., Cao, D.: Content representation for microblog rumor detection. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds.) Advances in Computational Intelligence Systems. AISC, vol. 513, pp. 245–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46562-3_16
Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1930–1939 (2018)
Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks (2016)
Meng, Y., et al.: Text classification using label names only: a language model self-training approach. arXiv preprint arXiv:2010.07245 (2020)
Nan, Q., Cao, J., Zhu, Y., Wang, Y., Li, J.: MDFEND: multi-domain fake news detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3343–3347 (2021)
Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638 (2017)
Qi, P., Cao, J., Yang, T., Guo, J., Li, J.: Exploiting multi-domain visual information for fake news detection. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 518–527. IEEE (2019)
Qin, Z., Cheng, Y., Zhao, Z., Chen, Z., Metzler, D., Qin, J.: Multitask mixture of sequential experts for user activity streams. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3083–3091 (2020)
Rawat, M., Kanojia, D.: Automated evidence collection for fake news detection. arXiv preprint arXiv:2112.06507 (2021)
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data 8(3), 171–188 (2020)
Silva, A., Luo, L., Karunasekera, S., Leckie, C.: Embracing domain differences in fake news: cross-domain fake news detection using multi-modal data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 557–565 (2021)
Tavernise, S.: As fake news spreads lies, more readers shrug at the truth. The New York Times, vol. 6 (2016)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, S., Tang, D., Zhang, L.: A large-scale hierarchical structure knowledge enhanced pre-training framework for automatic ICD coding. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. CCIS, vol. 1517, pp. 494–502. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92310-5_57
Wang, S., Tang, D., Zhang, L., Li, H., Han, D.: HieNet: bidirectional hierarchy framework for automated ICD coding. In: Bhattacharya, A., et al. (eds.) DASFAA 2022. LNCS, vol. 13246, pp. 523–539. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00126-0_38
Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake news detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 849–857 (2018)
Zadeh, L.A.: Fuzzy sets. In: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, pp. 394–432. World Scientific (1996)
Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., Shu, K.: Mining dual emotion for fake news detection. In: Proceedings of the Web Conference 2021, pp. 3465–3476 (2021)
Zhu, Y., et al.: Learning to expand audience via meta hybrid experts and critics for recommendation and advertising. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 4005–4013 (2021)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Z., Fu, C., Tang, X. (2023). Multi-domain Fake News Detection with Fuzzy Labels. In: El Abbadi, A., et al. Database Systems for Advanced Applications. DASFAA 2023 International Workshops. DASFAA 2023. Lecture Notes in Computer Science, vol 13922. Springer, Cham. https://doi.org/10.1007/978-3-031-35415-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-35415-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35414-4
Online ISBN: 978-3-031-35415-1
eBook Packages: Computer ScienceComputer Science (R0)