Skip to main content

Machine Learning Technique Based on Gaussian Mixture Model for Environment Friendly Communications

  • Conference paper
  • First Online:
Information Technology for Education, Science, and Technics (ITEST 2022)

Abstract

A machine learning technique, which is based on the Gaussian mixture model and uses a developed parametric and criteria features modification of the expectation-maximization (EM) algorithm with removing components of the Gaussian mixture model for a deep statistical analysis of cross-correlations between code structures in low power environment friendly direct sequence spread spectrum (DSSS) non-orthogonal multiple access (NOMA) communications, is proposed in the paper. The features of the EM-algorithm for this purpose are described and analyzed. The proposed modification of the EM-algorithm contains the justification of the initial number of components of a mixture, the initial model parameters, and three additional clustering criteria for adjusting the procedures of EM-algorithm under conditions of mathematical singularities in the log-likelihood function. An example of working of the proposed technique for DSSS NOMA communications is presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balusamy, B., Abirami, R.N., Kadry, S., Gandomi, A.H.: Cluster analysis. In: Big Data: Concepts, Technology, and Architecture. Wiley, Hoboken (2021)

    Google Scholar 

  2. Zhu, J., et al.: ECRKQ: machine learning-based energy-efficient clustering and cooperative routing for mobile underwater acoustic sensor networks. IEEE Access 9, 70843–70855 (2021). https://doi.org/10.1109/ACCESS.2021.3078174

    Article  Google Scholar 

  3. Alekseeva, D., et al.: Comparison of machine learning techniques applied to traffic prediction of real wireless network. IEEE Access 9, 159495–159514 (2021). https://doi.org/10.1109/ACCESS.2021.3129850

    Article  Google Scholar 

  4. Xu, Q., et al.: Roadside estimation of a vehicle’s center of gravity height based on an improved single-stage detection algorithm and regression prediction technology. IEEE Sens. J. 21(21), 24520–24530 (2021). https://doi.org/10.1109/JSEN.2021.3114703

    Article  Google Scholar 

  5. Jang, K.J., et al.: Rain attenuation prediction model for terrestrial links using Gaussian process regression. IEEE Commun. Lett. 25(11), 3719–3723 (2021). https://doi.org/10.1109/LCOMM.2021.3109619

    Article  Google Scholar 

  6. Agbinya, J.I.: Hidden Markov Modelling (HMM). In: Applied Data Analytics – Principles and Applications. River Publishers, Gistrup (2020)

    Google Scholar 

  7. Piho, L., Kruusmaa, M.: Subsurface flow path modeling from inertial measurement unit sensor data using infinite hidden Markov models. IEEE Sens. J. 22(1), 621–630 (2022). https://doi.org/10.1109/JSEN.2021.3128838

    Article  Google Scholar 

  8. Liu, C., Song, W., Lu, C., Xia, J.: Spatial-temporal hidden Markov model for land cover classification using multitemporal satellite images. IEEE Access 9, 76493–76502 (2021). https://doi.org/10.1109/ACCESS.2021.3080926

    Article  Google Scholar 

  9. Sustainable Development Goals | United Nations Development Programme (2021). https://www.undp.org/sustainable-development-goals

  10. Micheletti, J.A., Godoy, E.P.: Improved indoor 3D localization using LoRa wireless communication. IEEE Lat. Am. Trans. 20(3), 481–487 (2022). https://doi.org/10.1109/TLA.2022.9667147

    Article  Google Scholar 

  11. Chew, D., Adams, A.L., Uher, J.: Intelligent radio concepts. In: Wireless Coexistence: Standards, Challenges, and Intelligent Solutions. Wiley, Hoboken (2021)

    Google Scholar 

  12. Middlestead, R.W.: Spread‐spectrum communications. In: Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications. Wiley, Hoboken (2017)

    Google Scholar 

  13. Kopta, V., Enz, C.: Ultra-Low Power FM-UWB Transceivers for IoT. River Publishers, Gistrup (2019)

    Google Scholar 

  14. Zhong, R., et al.: AI empowered RIS-assisted NOMA networks: deep learning or reinforcement learning? IEEE J. Sel. Areas Commun. 40(1), 182–196 (2022). https://doi.org/10.1109/JSAC.2021.3126068

    Article  Google Scholar 

  15. Holubnychyi, A.H., Konakhovych, G.F.: Multiplicative complementary binary signal-code constructions. Radioelectron. Commun. Syst. 61(10), 431–443 (2018). https://doi.org/10.3103/S0735272718100011

    Article  Google Scholar 

  16. Holubnychyi, A.G., Konakhovych, G.F., Taranenko, A.G., Gabrousenko, Ye.I.: Comparison of additive and multiplicative complementary sequences for navigation and flight control systems. In: IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kiev, Ukraine, pp. 24–27 (2018). https://doi.org/10.1109/MSNMC.2018.8576275

  17. Holubnychyi, A.G., Konakhovych, G.F., Odarchenko, R.S.: Signal constructions with low resultant sidelobes for pulse compression navigation and radar systems. In: IEEE 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kiev, Ukraine, pp. 267–270 (2016). https://doi.org/10.1109/MSNMC.2016.7783158

  18. Yu, D., Deng, L.: Gaussian mixture models. In: Yu, D., Deng, L. (eds.) Automatic Speech Recognition. Signals and Communication Technology, pp. 13–21. Springer, London (2015). https://doi.org/10.1007/978-1-4471-5779-3_2

    Chapter  MATH  Google Scholar 

  19. Huang, T., Peng, H., Zhang, K.: Model selection for Gaussian mixture models. Stat. Sin. 27, 147–169 (2017). https://doi.org/10.5705/ss.2014.105

    Article  MathSciNet  MATH  Google Scholar 

  20. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    Google Scholar 

  21. Gupta, M.R.: Theory and use of the EM algorithm. Found. Trends® Signal Process. 4(3), 223–296 (2010). https://doi.org/10.1561/2000000034

    Article  MathSciNet  MATH  Google Scholar 

  22. Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Process. Lett. 15, 77–87 (2002). https://doi.org/10.1023/A:1013844811137

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Holubnychyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holubnychyi, O., Gabrousenko, Y., Taranenko, A., Slobodian, O., Zharova, O. (2023). Machine Learning Technique Based on Gaussian Mixture Model for Environment Friendly Communications. In: Faure, E., Danchenko, O., Bondarenko, M., Tryus, Y., Bazilo, C., Zaspa, G. (eds) Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-031-35467-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35467-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35466-3

  • Online ISBN: 978-3-031-35467-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics