Skip to main content

Optimization of the Communicative Process in the System “Driver-Vehicle-Environment”

  • Conference paper
  • First Online:
Information Technology for Education, Science, and Technics (ITEST 2022)

Abstract

The article considers the scheme of the communicative process of interaction of the objects of the system “driver-vehicle-environment” (D-V-E). The problem with this process is that the activities of objects (participants) in this system have different origins and properties. But all of them are aimed at fulfilling one goal – movement in the environment of the vehicle under the influence of the driver. Each object of the D-V-E system has its own nature of action, which leads to the need to synchronize them in order to avoid conflicts. When solving a permanent event in the middle of the system, each participant involved in the event has his own ways and means of solving the main goal. To avoid conflicts, it is proposed to impose on each object a system of properties inherent in a person. The article presents a scheme for optimizing communication relationships, based on the reactions of the driver’s senses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Facial Recognition Is Already Here: These Are the 30+ US Companies Testing the Technology. https://www.cbinsights.com/research/facial-recognition-technology-us-corporations/

  2. Brummelen, J. Van, O’Brien, M., Gruyer, D., Najjaran, H.: Autonomous vehicle perception: the technology of today and tomorrow. Transp. Res. Part C: Emerg. Technol. (2018)

    Google Scholar 

  3. Hummel, T.: BMW, daimler seal self-driving tech partnership. Automotive News Europe (2019). https://www.europe.autonews.com/automakers/bmw-daimler-seal-self-driving-techpartnership

  4. Wang, X.: Driver-centered Human-machine interface design: design for a better takeover experience in level 4 automated driving. The master thesis (2020)

    Google Scholar 

  5. Types of Vehicle Connectivity. https://blog.rgbsi.com/7-types-of-vehicle-connectivity

  6. Martínez-Díaz, M., Soriguera, F.: Autonomous vehicles: theoretical and practical challenges. Transp. Res. Proc. 33, 275–282 (2018). https://doi.org/10.1016/j.trpro.2018.10.103. ISSN 2352-1465

  7. Garcia, M., et al.: A tutorial on 5G NR V2X communications. IEEE Commun. Surv. Tutor. 1 (2021). https://doi.org/10.1109/COMST.2021.3057017

  8. Kunda, N., Lopotukha, E.: Application of information technologies in transport. InterConf. 84, 403–410 (2021). https://doi.org/10.51582/interconf.7-8.11.2021.040

  9. The Future of the In-Vehicle Experience. https://www.cbinsights.com/research/report/in-vehicle-experience-technology-future/

  10. Curley, P.: An environmentally aware auto – teaching the car about the world around it. SAE Technical Paper. 2008-21-0050 (2008)

    Google Scholar 

  11. Coles, Z.A., Beyerl, T.A., Augusma, I., Soloiu, V.: From sensor to street – intelligent vehicle control systems. Pap. Publ.: Interdisc. J. Undergr. Res. 5(9) (2016)

    Google Scholar 

  12. Migal, V.D., Maidan, H.: Intellectual systems in technical operation of cars: monograph (2018)

    Google Scholar 

  13. Research on the key technologies of intelligent vehicle control Wenming Cheng Automotive Engineering institute, Jiangxi University of Technology, Nanchang 330098, China 3rd International Conference on Management, Education, Information and Control (MEICI) (2015)

    Google Scholar 

  14. SAE_International. SAE Levels of Driving Automation (2013). http://cyberlaw.stanford.edu/loda

  15. SAE Standard J3016 “Sae international taxonomy and definitions for terms related to on-road motor vehicle automated driving systems,” levels of driving automation (2014)

    Google Scholar 

  16. Van den Beukel, A.P., Van der Voort, M.C.: Evaluation of ADAS with a supported-driver model for desired allocation of tasks between human and technology performance. In: Meyer, G., Valldorf, J., Gessner, W. (eds.) Advanced Microsystems for Automotive Applications 2009, pp. 187–208. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-00745-3_13

  17. Ramm, S.A.: Framework of 10 characteristics and perceptions of natural-feeling driver-car interaction from the contextual inquiry naturalness framework for driver-car interaction. A thesis submitted for the degree of Doctor of Philosophy. Department of Design, CEDPS, Brunel University (2018)

    Google Scholar 

  18. The Autonomous Vehicle Global Study, Abridged Version in Slides. https://www.ptolemus.com/research/the-autonomous-vehicle-global-study-2017-abridged-version-in-slides/

  19. Kalinina, I.O., Gozhiy, O.P., Musenko, G.O.: Consideration of competence of experts in methods of multicriteria analysis in problems of rational choice. Sci. Works Petro Mohyla Black Sea State Univ.. Ser.: Comput. Technol. 179, 116–123 (2012)

    Google Scholar 

  20. Lytovchenko, V.V., Kreyda, A.M., Pidhornyy, M.V.: Information model of driving a vehicle with a continuously variable transmission. In: Automation-2017: XXIV International Conference on Automatic Control, Kyiv, pp. 209–210 (2017)

    Google Scholar 

  21. Lytovchenko, V.V., Pidhornyy, M.V.: Choosing a method of designing a vehicle control system. In: Proceedings of All-Ukrainian Scientific and Technical Conference on Modern Trends in the Development of Mechanical Engineering and Transport, pp. 144–148. KrNU, Kremenchuk (2020)

    Google Scholar 

Download references

Acknowledgements

Authors of publication express their gratitude to the Cherkasy SRFC of the MIA of Ukraine. Personal thanks to the director of the Cherkasy SRFC of the MIA of Ukraine, Aksionov Vasyl Vasylovych.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Lytovchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lytovchenko, V., Pidhornyy, M. (2023). Optimization of the Communicative Process in the System “Driver-Vehicle-Environment”. In: Faure, E., Danchenko, O., Bondarenko, M., Tryus, Y., Bazilo, C., Zaspa, G. (eds) Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-031-35467-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35467-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35466-3

  • Online ISBN: 978-3-031-35467-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics