Abstract
The emergence of advanced cryptographic protocols has promoted the developments of many applications, such as secure multi-party computation (MPC). For this reason, new symmetric-key primitives have been designed to natively support the finite field \(\mathbb {F}_p\) with odd characteristic for better efficiencies. However, some well-studied symmetric cryptanalytic methods and techniques over \(\mathbb {F}_2^n\) cannot be applied to these new primitives over \(\mathbb {F}_p\) directly. Considering less standard design approaches adopted in these novel MPC-friendly ciphers, these proposals are in urgent need of full investigations; generalizations of the traditional cryptanalytic tools and techniques to \(\mathbb {F}_p\) will also contribute to better understand the security of these new designs.
In this paper, we first show that the Fast Fourier Transform (FFT) technique for the estimations of correlation, introduced by Collard et al. at ICISC 2007, can be applied to \(\mathbb {F}_p\) and significantly improves the complexity of Matsui’s Algorithm 2 over \(\mathbb {F}_p\). Then, we formalize the differential-linear (DL) cryptanalysis to \(\mathbb {F}_p\). Inspired by the differential-linear connectivity table (DLCT) introduced by Bar-On et al. at EUROCRYPT 2019, we also include the DLCT into the consideration, and find the relation between DLCT and differential distribution table (DDT) over \(\mathbb {F}_p\). Finally, we mount key recovery attacks on a version of HADESMiMC, which is a SHARK-like MPC-friendly block cipher proposed by Grassi et al. at EUROCRYPT 2020. We denote this version as HADESMiMC-128 in this paper. For linear cryptanalysis with the FFT technique, we can attack 7 rounds of HADESMiMC-128. For DL cryptanalysis, a 7-round key recovery attack of HADESMiMC-128 is also mounted but with better time and data complexity. It should be noted that the attacks are still far from threatening the security of the full 14-round HADESMiMC-128.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: application to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 371–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_13
Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8
Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7
Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symmetric Cryptol. 2020(3), 1–45 (2020)
Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_13
Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11
Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885
Beierle, C., et al.: Improved differential-linear attacks with applications to ARX ciphers. J. Cryptol. 35(4), 29 (2022)
Beyne, T., et al.: Out of oddity – new cryptanalytic techniques against symmetric primitives optimized for integrity proof systems. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_11
Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_16
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)
Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_1
Bleichenbacher, D.: On the generation of DSA one-time keys. In: Presentation at Cryptography Research Inc., San Francisco (2007)
Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited. J. Cryptol. 30(3), 859–888 (2017)
Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 388–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_24
Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31
Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014)
Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053450
Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76788-6_7
Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158. ACM (1971)
Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. ISC, Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Davis, P.J.: Circulant Matrices. American Mathematical Society (2013)
Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryption based on Toffoli-Gates over large finite fields. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 3–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_1
Eichlseder, M., et al.: An algebraic attack on ciphers with low-degree round functions: application to full MiMC. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 477–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_16
Flórez-Gutiérrez, A.: Optimising linear key recovery attacks with affine Walsh transform pruning. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13794, pp. 447–476. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5_16
Flórez-Gutiérrez, A., Naya-Plasencia, M.: Improving key-recovery in linear attacks: application to 28-round PRESENT. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 221–249. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_9
Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: A new Feistel approach meets fluid-SPN: griffin for zero-knowledge applications. IACR Cryptology ePrint Archive, p. 403 (2022)
Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M., Walch, R.: Reinforced concrete: a fast hash function for verifiable computation. In: CCS, pp. 1323–1335. ACM (2022)
Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a generalization of substitution-permutation networks: the HADES design strategy. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_23
Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8
Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3
Liu, Z., Gu, D., Zhang, J., Li, W.: Differential-multiple linear cryptanalysis. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 35–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_3
Lu, J.: A methodology for differential-linear cryptanalysis and its applications. Des. Codes Cryptogr. 77(1), 11–48 (2015)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7_5
Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming. IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017)
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Acknowledgement
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This research is supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704702), the National Natural Science Foundation of China (Grant No. 62032014), the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025). Puwen Wei is partially supported by National Key R &D Program of China (Grant No. 2022YFB2701700), Shandong Provincial Natural Science Foundation (Grant No. ZR2020MF053). Shiyao Chen is supported by the National Research Foundation, Singapore under its Strategic Capability Research Centres Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Constructions of HADES and MDS
MDS Matrices. All MDS matrices in the HADES strategy are Cauchy matrices.
Definition 8
(Cauchy Matrix). Let \(X=(x_1, \cdots ,x_t)\in \mathbb {F}_p^t\) and \(Y=(y_1, \cdots ,y_t)\in \mathbb {F}_p^t\) s.t.
-
\(\forall i\ne j:x_i\ne x_j, y_i\ne y_j\),
-
\(\forall i,j\in \{1,2,\cdots t\}:x_i+y_j\ne 0, x_i \ne y_j\).
Let M be the Cauchy matrix corresponding to (X, Y), then its entry at (i, j) is
A Cauchy matrix is an MDS matrix.
Practical Example. In the cryptanalysis of a concrete instance of HADESMiMC-128 working on GF(251), we select a pair (X, Y) randomly as below,
and get the following \(16\times 16\) Cauchy matrix,
B Kronecker Product
Definition 9
(Kronecker Product \(\otimes \)). Assume A is a matrix of size \(m\times n\) and B is a matrix of size \(r\times s\), then the Kronecker Product of A and B is a matrix C of size \(mr\times ns\). In terms of formula :
C The Construction of Searching Differential Model
Constraints Imposed by Modular Addition. Let \(\varDelta _{in}^1\) and \(\varDelta _{in}^2\) represent two input differences for modular addition, the output difference is \(\varDelta _{out}\). Then the character of modular addition due to \((\varDelta _{in}^1, \varDelta _{in}^2,\varDelta _{out})\) is of nonzero probability if and only if it fulfills \(\varDelta _{in}^1 + \varDelta _{in}^2 = \varDelta _{out}\).
Constraints Imposed by Linear Transformation. Let column vector \(\varDelta _{in}\) and \(\varDelta _{out}\) represent the input and output differences for linear transformation M. Then the character of M due to \((\varDelta _{in},\varDelta _{out})\) is of nonzero probability if and only if it fulfills \(\varDelta _{out}=M\cdot \varDelta _{in}\).
Constraints Imposed by k -Branch (\(k\ge 3\) ). Let \(\varDelta _{in}\) represent the input difference for k-branch, the output differences are \(\varDelta _{out}^1,\ \varDelta _{out}^2, \ \cdots , \ \varDelta _{out}^{k-1}\). The relation between these differences is \(\varDelta _{in}=\varDelta _{out}^1=\varDelta _{out}^2=\cdots =\varDelta _{out}^{k-1}\).
Then the character of k-branch due to \((\varDelta _{in}, \varDelta _{out}^1,\cdots ,\varDelta _{out}^{k-1})\) is of nonzero probability if and only if it fulfills \(\varDelta _{in}=\varDelta _{out}^1 = \varDelta _{out}^2 = \cdots = \varDelta _{out}^{k-1}\).
Constraints Describing the S-box Operation. Suppose \(\varDelta _{in}\) and \(\varDelta _{out}\) are the input and output differences of a bijective S-box S, which is defined over \(\mathbb {F}_p\). Use \(B[\varDelta _{in},\varDelta _{out}]\) as an indicator to represent whether it is a possible differential transitions of S. When \(B[\varDelta _{in},\varDelta _{out}] = 1\), it means that \(\varDelta _{in}{\mathop {\longrightarrow }\limits ^{S}}\varDelta _{out}\) is a possible transitions. Otherwise, it means an impossible transitions. Then, we have the relations
Objective Function. Now, under the condition that \(B\ne -1\), we set up the objective function to be the sum of all indicators of all S-boxes. It corresponds to the number of active S-boxes, and can be added constraints to determine a lower bound of the distinguisher. Note that in the block cipher over \(\mathbb {F}_p\), the S-box is generally designed by using the power map, that is \(x^3\) and \(x\in \mathbb {F}_p\). Except the first row and first column for \((\varDelta _{in},\varDelta _{out})=(0,0)\), the DDT of \(x^3\) is kind of balanced, that is, the half of the entries are 2 and just one entry is 1 in each row and column. Thus, for any active S-box of \(x^3\), it almost has the probability \(\frac{2}{p}\). Naturally, we can directly count the number of S-boxes of the distinguisher to simplify the probability representation in the model for this kind of S-box.
D Linear Trails Under Other Primes and MDS Matrices
For each \(p\in \{227, 233, 239\}\), we randomly select 4 MDS matrices.
\(p=227\).
-
Matrix1:
$$ X = [205, 212, 217, 137, 101, 65, 133, 199, 126, 83, 178, 158, 107, 37, 55, 216], $$$$ Y = [52, 201, 25, 146, 159, 220, 114, 66, 182, 98, 135, 47, 197, 87, 54, 169]. $$ -
Matrix2:
$$ X = [163, 154, 18, 168, 141, 203, 217, 132, 221, 206, 55, 19, 130, 209, 72, 7], $$$$ Y = [215, 178, 148, 156, 57, 32, 15, 58, 138, 152, 118, 133, 224, 116, 60, 68]. $$ -
Matrix3:
$$ X = [152, 161, 106, 200, 172, 60, 94, 179, 20, 160, 176, 164, 195, 50, 187, 193], $$$$ Y = [198, 91, 115, 6, 183, 217, 41, 221, 219, 22, 101, 28, 148, 9, 88, 175]. $$ -
Matrix4:
$$ X = [226, 148, 161, 24, 91, 116, 3, 16, 222, 107, 14, 65, 102, 106, 200, 20], $$$$ Y = [174, 73, 163, 95, 58, 188, 146, 176, 205, 9, 132, 217, 155, 189, 122, 11]. $$
(See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13).
\(p=233\).
-
Matrix1:
$$ X = [34, 80, 174, 199, 153, 19, 111, 1, 56, 150, 198, 119, 125, 60, 47, 78], $$$$ Y = [86, 196, 154, 178, 135, 219, 61, 194, 127, 170, 137, 43, 211, 68, 93, 4]. $$ -
Matrix2:
$$ X = [81, 27, 2, 10, 213, 71, 94, 181, 62, 74, 192, 111, 139, 23, 54, 115], $$$$ Y = [183, 228, 32, 166, 126, 70, 190, 11, 6, 91, 187, 216, 66, 33, 145, 7]. $$ -
Matrix3:
$$ X = [228, 65, 24, 172, 16, 124, 10, 197, 157, 27, 107, 44, 87, 84, 115, 92], $$$$ Y = [176, 173, 88, 139, 54, 208, 63, 15, 3, 86, 114, 83, 164, 155, 120, 82]. $$ -
Matrix4:
$$ X = [38, 8, 88, 226, 159, 188, 165, 103, 217, 137, 129, 140, 143, 157, 231, 110], $$$$ Y = [151, 179, 200, 4, 198, 114, 187, 94, 116, 199, 168, 219, 189, 81, 180, 191]. $$
\(p=239\).
-
Matrix1:
$$ X = [57, 46, 202, 32, 190, 104, 54, 174, 63, 114, 120, 27, 186, 35, 160, 115], $$$$ Y = [42, 91, 6, 44, 90, 131, 201, 164, 62, 39, 48, 70, 69, 127, 139, 158]. $$ -
Matrix2:
$$ X = [181, 218, 128, 122, 134, 236, 96, 195, 155, 156, 68, 15, 23, 217, 28, 85], $$$$ Y = [142, 42, 130, 215, 135, 148, 93, 50, 73, 174, 186, 7, 198, 150, 210, 30]. $$ -
Matrix3:
$$ X = [135, 34, 176, 227, 29, 22, 37, 218, 224, 119, 60, 75, 183, 214, 171, 88], $$$$ Y = [54, 225, 173, 85, 77, 137, 199, 203, 230, 27, 174, 65, 13, 131, 4, 32]. $$ -
Matrix4:
$$ X = [86, 157, 220, 85, 59, 227, 154, 206, 50, 84, 23, 125, 64, 105, 134, 103], $$$$ Y = [217, 40, 25, 43, 193, 49, 1, 160, 46, 94, 186, 97, 108, 161, 131, 37]. $$
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Z., Chen, S., Wang, M., Wei, P. (2023). Linear Cryptanalysis and Its Variants with Fast Fourier Transformation Technique on MPC/FHE/ZK-Friendly \(\mathbb {F}_p\)-Based Ciphers. In: Simpson, L., Rezazadeh Baee, M.A. (eds) Information Security and Privacy. ACISP 2023. Lecture Notes in Computer Science, vol 13915. Springer, Cham. https://doi.org/10.1007/978-3-031-35486-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-35486-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35485-4
Online ISBN: 978-3-031-35486-1
eBook Packages: Computer ScienceComputer Science (R0)