Skip to main content

Simulation, Perception, and Prediction of the Spread of COVID - 19 on Cellular Automata Models: A Survey

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 348 Accesses

Abstract

Some of the socio-economic issues encountered today are boosted by the prevalence of a gruesome pandemic. The spread of a rather complex disease—COVID-19—has resulted in a collapse of social life, health, economy and general well-being of man. The adverse effects of the pandemic have devastating consequences on the world and the only hope apart from a hypothetical cure for the disease would be measures to understand its propagation and bring in effective measures to control it. This paper surveys the role of Cellular Automata in modeling the spread of COVID-19. Possible solutions and perceptions regarding dynamics, trends, dependent factors, immunity, etc. have been addressed and elucidated for better understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, K.G., et al.: The proximal origin of SARS-CoV-2. Nat. Med. 26(4), 450–452 (2020)

    Article  Google Scholar 

  2. Wu, Y.-C., Chen, C.-S., Chan, Y.-J.: The outbreak of COVID-19: an overview. J. Chin. Med. Assoc. 83(3), 217 (2020)

    Article  Google Scholar 

  3. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

  4. Lauer, S.A., et al.: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582 (2020)

    Article  Google Scholar 

  5. Bin, S., Sun, G., Chen, C.-C.: Spread of infectious disease modeling and analysis of different factors on spread of infectious disease based on cellular automata. Int. J. Environ. Res. Public Health 16(23), 4683 (2019)

    Article  Google Scholar 

  6. Ragala, R., Guntur, B.K.: Recursive block LU decomposition based ELM in apache spark. J. Intell. Fuzzy Syst. 39, 8205–8215 (2020)

    Article  Google Scholar 

  7. Ragala, R., et al.: Rank based pseudoinverse computation in extreme learning machine for large datasets. arXiv preprint arXiv:2011.02436 (2020)

  8. Zhou, Y., et al.: The global COVID-19 pandemic at a crossroads: relevant countermeasures and ways ahead. J. Thorac. Dis. 12(10), 5739 (2020)

    Article  Google Scholar 

  9. Mondal, S., et al.: Mathematical modeling and cellular automata simulation of infectious disease dynamics: applications to the understanding of herd immunity. J. Chem. Phys. 153(11), 114119 (2020)

    Article  Google Scholar 

  10. Athithan, S., Shukla, V.P., Biradar, S.R.: Dynamic cellular automata based epidemic spread model for population in patches with movement. J. Comput. Environ. Sci. 2014, 8 (2014). Article ID 518053

    Google Scholar 

  11. Ilnytskyi, J., Pikuta, P., Ilnytskyi, H.: Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model. Phys. A 509, 241–255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dascalu, M., Stefan, G., Zafiu, A., Plavitu, A.: Applications of multilevel cellular automata in epidemiology. Stevens Point, Wisconsin, USA, pp. 439–444 (2011)

    Google Scholar 

  13. Maji, P., Shaw, C., Ganguly, N., Sikdar, B.K., Chaudhuri, P.P.: Theory and application of cellular automata for pattern classification. Fundam. Inf. 58(3–4), 321–354 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Chen, Q., Mynett, A., Minns, A.: Application of cellular automata to modelling competitive growths of two underwater species Chara aspera and Potamogetonpectinatus in Lake Veluwe. Ecol. Model. 147, 253–265 (2002)

    Article  Google Scholar 

  15. Skoneczny, S.: Cellular-automata based modeling of heterogeneous biofilm growth for microbiological processes with various kinetic models. Chem. Process. Eng. 40(2), 145–155 (2019)

    Google Scholar 

  16. Sun, G.-Q., Jin, Z., Song, L.-P., Chakraborty, A., Li, B.-L.: Phase transition in spatial epidemics using cellular automata with noise. Ecol. Res. 26(2), 333–340 (2010). https://doi.org/10.1007/s11284-010-0789-9

    Article  Google Scholar 

  17. Pereira, F.M., Schimit, P.H.: Dengue fever spreading based on probabilistic cellular automata with two lattices. Physica A: Stat. Mech. Appl. 499, 75–87 (2018). https://doi.org/10.1016/j.physa.2018.01.029

    Article  MathSciNet  MATH  Google Scholar 

  18. Kleyko, D., Khan, S., Osipov, E., Yong, S.: Modality classification of medical images with distributed representations based on cellular automata reservoir computing. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1053–1056 (2017). https://doi.org/10.1109/ISBI.2017.7950697

  19. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sree, P.K., Smt, S.S.S.N., Usha Devi, N.: COVID-19 hotspot trend prediction using hybrid cellular automata in India. Eng. Sci. Technol. 2(1), 54–60 (2020)

    Google Scholar 

  21. Neumann, J.V.: The Theory of Self-Reproducing Automata. In: Burks, A.W. (ed.) University of Illinois Press, Urbana and London (1966)

    Google Scholar 

  22. Lugo, I., Alatriste Contreras, M.: Intervention strategies with 2D cellular automata for testing SARS-CoV-2 and reopening the economy. Sci. Rep. 12(1), 13481 (2020). https://doi.org/10.21203/rs.3.rs-40739/v1

  23. Wang, S., Fang, H., Ma, Z., Wang, X.: Forecasting the 2019-ncov epidemic in Wuhan by SEIR and cellular automata model. In: Journal of Physics: Conference Series (2020)

    Google Scholar 

  24. Pokkuluri, K.S., Devi Nedunuri, S.U.: A novel cellular automata classifier for COVID-19 prediction. J. Health Sci. 10(1), 34–38 (2020)

    Google Scholar 

  25. Medrek, M., Pastuszak, Z.: Numerical simulation of the novel coronavirus spreading. Expert Syst. Appl. 166, 114109 (2021)

    Article  Google Scholar 

  26. Dai, J., Zhai, C., Ai, J., Ma, J., Wang, J., Sun, W.: Modeling the spread of epidemics based on cellular automata. Processes 9(1), 55 (2021). https://doi.org/10.3390/pr9010055

    Article  Google Scholar 

  27. Vyklyuk, Y., et al.: Modeling and analysis of different scenarios for the spread of COVID-19 by using the modified multi-agent systems - evidence from the selected countries. Results Phys. 20, 103662 (2021). https://doi.org/10.1016/j.rinp.2020.103662

    Article  Google Scholar 

  28. Xiao, M., Zhan, Q., Li, Y.: Research on combating epidemics based on differential equations and cellular automata. In: Journal of Physics: Conference Series, vol. 1865, no. 4. IOP Publishing (2021)

    Google Scholar 

  29. Munshi, J., et al.: Spatiotemporal dynamics in demography-sensitive disease transmission: COVID-19 spread in NY as a case study. arXiv: Populations and Evolution (2020)

    Google Scholar 

  30. Mukherjee, S., Mondal, S., Bagchi, B.: Dynamical theory and cellular automata simulations of pandemic spread: understanding different temporal patterns of infections (2020)

    Google Scholar 

  31. Monteiro, L.H.A., et al.: On the spread of SARS-CoV-2 under quarantine: a study based on probabilistic cellular automaton. Ecol. Complex. 44, 100879 (2020)

    Article  Google Scholar 

  32. Gwizdałła, T.: Viral disease spreading in grouped population. Comput. Methods Programs Biomed. 197, 105715 (2020). https://doi.org/10.1016/j.cmpb.2020.105715

    Article  Google Scholar 

  33. Lu, J.: A Spatial Markov Chain Cellular Automata Model for the Spread of the COVID-19 virus: Including parameter estimation (2020)

    Google Scholar 

  34. Ghosh, S., Bhattacharya, S.: A data-driven understanding of COVID-19 dynamics using sequential genetic algorithm based probabilistic cellular automata. Appl. Soft Comput. 96, 106692–106692 (2020)

    Article  Google Scholar 

  35. Schimit, P.H.T.: A model based on cellular automata to estimate the social isolation impact on COVID-19 spreading in Brazil. Comput. Methods Programs Biomed. 200, 105832 (2021)

    Article  Google Scholar 

  36. Schimit, P.: An Epidemiological Model to Discuss the Mutation of the Virus SARS-CoV-2 and the Vaccination Rate (10 March 2021)

    Google Scholar 

  37. Ghosh, S., Bhattacharya, S.: Computational model on COVID-19 pandemic using probabilistic cellular automata. SN Comput. Sci. 2, 230 (2021)

    Article  Google Scholar 

  38. Wikipedia contributors. (22 January 2021). HPP model. In Wikipedia, The Free Encyclopedia. Accessed 14 Sep 2021

    Google Scholar 

  39. Wikipedia contributors. (22 July 2021). Lattice gas automaton. In Wikipedia, The Free Encyclopedia. Accessed 14 Sep 2021

    Google Scholar 

  40. Datta, A., Acharyya, M.: Modelling the Spread of an Epidemic in Presence of Vaccination using Cellular Automata (2021)

    Google Scholar 

  41. León, A.: Study of the effectiveness of partial quarantines applied to control the spread of the Covid-19 virus. medRxiv (2021)

    Google Scholar 

  42. Salcido, A.: A lattice gas model for infection spreading: application to the COVID-19 pandemic in the Mexico City metropolitan area. Results Phys. 20, 103758 (2021)

    Article  Google Scholar 

  43. Basu, S., Ghosh, S.: Fuzzy cellular automata model for discrete dynamical system representing spread of MERS and COVID-19 virus (2020)

    Google Scholar 

  44. Mukherjee, S., Mondal, S., Bagchi, B.: Origin of multiple infection waves in a pandemic: effects of inherent susceptibility and external infectivity distributions (2020)

    Google Scholar 

  45. Mukherjee, S., et al.: Persistence of a pandemic in the presence of susceptibility and infectivity distributions in a population: mathematical model. medRxiv (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Ragala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rakshana, B.S., Anahitaa, R., Rao, U.S., Ragala, R. (2023). Simulation, Perception, and Prediction of the Spread of COVID - 19 on Cellular Automata Models: A Survey. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_1

Download citation

Publish with us

Policies and ethics