Skip to main content

Skeleton-Based Human Activity Recognition Using Bidirectional LSTM

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 228 Accesses

Abstract

Human activity recognition using 3D skeleton data has drawn the attention of research community. It is an interesting and well-sought-after computer vision problem whose prime objective is to determine actions performed by a human in a video or an image. The research work investigating human activity recognition in the 3D skeleton are still very limited. In this paper, we employ bidirectional long short-term memory (Bi-LSTM) deep learning model that utilizes skeleton information for modeling the dynamics in sequential data. The proposed model has been evaluated on Stony Brook University’s (SBU) dataset having two-person interactions with 8 different actions. Results demonstrate that the proposed method perform better than feature-based machine learning and state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Jafari, R., Kehtarnavaz, N.: Action recognition from depth sequences using depth motion maps-based local binary patterns. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1092–1099. IEEE (2015)

    Google Scholar 

  2. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)

    Google Scholar 

  3. Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a kinect® sensor. Sensors 14(2), 2756–2775 (2014)

    Article  Google Scholar 

  4. Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical deep temporal model for group activity recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1971–1980 (2016)

    Google Scholar 

  5. Islam, M.S., Bakhat, K., Khan, R., Naqvi, N., Islam, M.M., Ye, Z.: Applied human action recognition network based on SNSP features. Neural Processing Letters, pp. 1–14 (2022)

    Google Scholar 

  6. Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 95–109. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_7

    Chapter  Google Scholar 

  7. Lai, K., Yanushkevich, S.N.: CNN+ RNN depth and skeleton based dynamic hand gesture recognition. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3451–3456. IEEE (2018)

    Google Scholar 

  8. Li, W., Wen, L., Chuah, M.C., Lyu, S.: Category-blind human action recognition: a practical recognition system. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4444–4452 (2015)

    Google Scholar 

  9. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  10. Manzi, A., Fiorini, L., Limo-sani, R., Dario, P., Cavallo, F.: Two-person activity recognition using skeleton data. IET Comput. Vision 12(1), 27–35 (2018)

    Article  Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. research 12, 2825–2830 (2011)

    Google Scholar 

  12. Hbali, Y., Hbali, S., Ballihi, L., Sadgal, M.: Skeleton-based human activity recognition for elderly monitoring systems. IET Comput. Vis. 12(1), 16–26 (2018). https://doi.org/10.1049/iet-cvi.2016.0231

  13. Ren, B., Liu, M., Ding, R., Liu, H.: A survey on 3D skeleton-based action recognition using learning method. arXiv preprint arXiv:2002.05907 (2020)

  14. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  15. Singh, P., Chand, S.: Pardeep at semeval-2019 task 6: identifying and categorizing offensive language in social media using deep learning. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 727–734 (2019)

    Google Scholar 

  16. Singh, P., Chand, S.: Predicting the popularity of rumors in social media using machine learning. In: Shukla, R.K., Agrawal, J., Sharma, S., Chaudhari, N.S., Shukla, K.K. (eds.) Social Networking and Computational Intelligence. LNNS, vol. 100, pp. 775–789. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2071-6_65

    Chapter  Google Scholar 

  17. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  19. Thakur, D., Biswas, S.: An integration of feature extraction and guided regularized random forest feature selection for smartphone based human activity recognition. J. Netw. Comput. Appl. 204, 103417 (2022)

    Google Scholar 

  20. Taha, A., Zayed, H.H., Khalifa, M.E., El-Horbaty, E.S.M.: Skeleton-based human activity recognition for video surveillance. Int. J. Sci. Eng. Res. 6(1), 993–1004 (2015)

    Google Scholar 

  21. Wang, X., Zhu, Z.: Vision-based framework for automatic interpretation of construction workers’ hand gestures. Autom. Constr. 130, 103872 (2021)

    Article  Google Scholar 

  22. Wang, Y., Sun, M., Liu, L.: Basketball shooting angle calculation and analysis by deeply-learned vision model. Futur. Gener. Comput. Syst. 125, 949–953 (2021)

    Article  Google Scholar 

  23. Xu, G.L., Zhou, H., Yuan, L.Y., Huang, Y.Y.: Using improved dense trajectory feature to realize action recognition. J. Comput. 32(4), 94–108 (2021)

    Article  Google Scholar 

  24. Yifan, W., Doersch, C., Arandjelović, R., Carreira, J., Zisserman, A.: Input-level inductive biases for 3D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6176–6186 (2022)

    Google Scholar 

  25. Yu, W., Yang, K., Bai, Y., Xiao, T., Yao, H., Rui, Y.: Visualizing and comparing AlexNet and VGG using deconvolutional layers. In: Proceedings of the 33rd International Conference on Machine Learning (2016)

    Google Scholar 

  26. Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person interaction detection using body-pose features and multiple instance learning. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work-shops, pp. 28–35. IEEE (2012)

    Google Scholar 

  27. Zhang, S., et al.: Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks. IEEE Trans. Multimedia 20(9), 2330–2343 (2018)

    Article  Google Scholar 

  28. Zhang, X., Xu, C., Tian, X., Tao, D.: Graph edge convolutional neural networks for skeleton-based action recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 3047–3060 (2019)

    Article  Google Scholar 

  29. Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., Xie, X.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monika, Singh, P., Chand, S. (2023). Skeleton-Based Human Activity Recognition Using Bidirectional LSTM. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_15

Download citation

Publish with us

Policies and ethics