Abstract
Nowadays, the combination of digital images and machine learning techniques to solve COVID-19 problems has been one of the most explored elements. Most efforts have focused on the detection and classification of lung diseases, which requires a large amount of images to process. Extracted images from different sources need to be loaded into big data base after required transformation to reduce error and minimize data loss. This process is also known as Extraction-Transformation-Loading (ETL). It is responsible for extracting, transforming, conciliating, and loading data for supporting decision-making requirements. This paper provides the innovative approach of using an images extract, transform, load (MI-ETL) solution, to provide a large number of images of interest from heterogeneous data sources into a specialized database. The main objective of the paper is to present the three stages of the MI-ETL process starting with the collection of medical images from several sources using different techniques. Then, applying deep learning techniques (CNN filter) to extract only images of the lungs, and finally loading the features of the images in a big database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gudivada, V.N., Yates, R.B-., Raghavan, V.V.: Big data: promises and problems. Computer, 48(03), 20–23 (2015)
Hilali, I., Arfaoui, N., Ejbali, R.: A new approach for integrating data into big data warehouse. In: Fourteenth International Conference on Machine Vision (ICMV 2021)SPIE 12084, pp 475–480 (2022)
Vassiliadis, P., Simitsis, A.: Extraction, transformation, and loading. Encycl. Database Syst., 10 (2009)
Çağıltay, N.E., Topallı, D., Aykaç, Y.E., Tokdemir, G.: Abstract conceptual database model approach. In: 2013 Science and Information Conference, pp. 275–281 IEEE(2013)
Souissi, S., BenAyed, M., Genus: an ETL tool treating the big data variety. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp.1–8. IEEE (2016)
Haidar, A.: Aly, F., Holloway, L.: PDCP: a set of tools for extracting, transforming, and loading radiotherapy data from the Orthanc research PACS. Software 1(2), 215–222 (2022)
Li, X., Mao, Y.: Real-time data ETL framework for big real-time data analysis. In: 2015 IEEE International Conference on Information and Automation, pp. 1289–1294. IEEE (2015)
Drešček, U., Fras, M.K., Tekavec, J., Lisec, A.: Spatial ETL for 3D building modelling based on unmanned aerial vehicle data in semi-urban areas. Remote Sens., 12(12), 1972 (2020)
Godinho, T.M., Lebre, R., Almeida, J.R., Costa. C.: ETL framework for real-time business intelligence over medical imaging repositories. J. Digital Imaging, 32(5), 870–879 (2019)
Mukherjee, R., Kar, P.: A comparative review of data warehousing ETL tools with new trends and industry insight. In: 2017 IEEE 7th International Advance Computing Conference (IACC), pp. 943–948. IEEE (2017)
Sarr, E.N., Ousmane, S., Diallo, A.: Factextract: automatic collection and aggregation of articles and journalistic factual claims from online newspaper. In: 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 336–341. IEEE (2018)
Shin, A., Yamaguchi, M., Ohnishi, K., Harada, T.: Dense image representation with spatial pyramid VLAD coding of CNN for locally robust captioning. arXiv preprint arXiv:1603.09046 (2016)
Wei, W., Xiao, H., Ji, L., Peng, Z., Xin, W.: Detecting COVID-19 patients in X-Ray images based on MAI-nets. Int. J. Comput. Intell. Syst. 14(1), 1607–1616 (2021)
Jain, G., Mittal, D., Thakur, D., Mittal, M.K.: A deep learning approach to detect COVID-19 coronavirus with X-Ray images. Biocybernetics Biomed. Eng., 40(4), 1391–1405, (2020)
Rahmani, M.K.I., Taranum, F., Nikhat, R., Farooqi, M.D.R., Khan, M.A.: Automatic real-time medical mask detection using deep learning to fight COVID-19. Comput. Syst. Sci. Eng., 42(3), 1181–1198 (2022)
Chawla, N.V., Davis, D.A.: Bringing big data to personalized healthcare: a patient-centered framework. J. Gen. Intern. Med., 28(3), 660–665 (2013)
Krishna, T.H., Rajabhushanam, C.: Exploring NOSQL databases in medical image management. Int. J. Mod. Agric. 9(4), 1259–1265 (2020)
The authors would like to acknowledge the financial support of this work by grants from General Direction of Scientific Research (DGRST), Tunisia, under the ARUB.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Elhajjej, M.H., Arfaoui, N., Said, S., Ejbali, R. (2023). A New Approach for the Design of Medical Image ETL Using CNN. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-35501-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35500-4
Online ISBN: 978-3-031-35501-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)