Abstract
The implementation of accurate automatic algorithms for brain tumor segmentation could improve disease diagnosis, treatment monitoring, and make large-scale studies of the pathology possible. In this study, we optimize the architecture used for the challenging task of brain lesion segmentation, which is based on the 3D convolutional neural network. In order to integrate broader local and contextual information, we use a two-channel architecture that processes input images at multiple scales simultaneously. Furthermore, we show that optimizing at the momentum value level, helps us achieve better results in the DSC, accuracy and sensitivity criteria. Our method has also been tested by the BRATS 2015 training dataset, where it has performed very well despite the simplicity of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kamnitsas, K., et al.: Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2016)
Ding, K., et al.: Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J. Neurotrauma 25(12), 1433–1440 (2008)
Moen, K.G., et al.: A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 83, 1193–1200 ((2012))
Maas, A.I., et al.: Participants, Investigators, et al. Collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76(1), 67–80 (2015)
Warner, M.A.: Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J. Neurotrauma 27(12), 2121–2130 (2010)
Carey, L.M., et al.: Connelly Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurol. 8(5), 507–527 (2013)
Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS) Med. Imaging IEEE Trans. 34(10), 1993–2024 (2015)
Irimia, A., et al.: Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. NeuroImage: Clin. 1(1), 1–17 (2012)
Yuh, E.L., Cooper, S.R., Ferguson, A.R., Manley G.T.: Quantitative CT improves outcome prediction in acute traumatic brain injury. J. Neurotrauma 29(5), 735–746 (2012)
Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)
Doyle, S., Vasseur, F., Dojat, M., Forbes, F.: Fully automatic brain tumour segmentation from multiple MR sequences using hidden markov fields and variational EM Procs. NCI-MICCAI BRATS, pp. 18–22 (2013)
Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. LNCS vol. 6892. Springer, Berlin, Heidelberg (2011).
Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Joint tumor segmentation and dense deformable registration of brain MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 651–658. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_80
Liu, X., Niethammer, M., Kwitt, R., McCormick, M., Aylward, S.: Low-rank to the rescue – atlas-based analyses in the presence of pathologies. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 97–104. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_13
Weiss, N., Rueckert, D., Rao, A.: Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_92
Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 606–613. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_76
Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S.: Template-based multimodal joint generative model of brain data. In: Ourselin, S., Alexander, D., Westin, C.F., Cardoso, M. (eds.) Information Processing in Medical Imaging. IPMI 2015. LNCS, vol. 9123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_2
Erihov, M., Alpert, S., Kisilev, P., Hashoul, S.: A cross saliency approach to asymmetry-based tumor detection. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. LNCS, vol. 9351. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_7
Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 111–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_14
Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46
Rao, A., Ledig, C., Newcombe, V., Menon, D., Rueckert, D.: Contusion segmentation from subjects with traumatic brain injury: a random forest framework. In: 2014 IEEE 11th International Symposium on, Biomedical Imaging (ISBI), pp. 333–336. IEEE (2014)
Tustison, N., Wintermark, M., Durst, C., Brian, A.: ANTs and Arboles in proc of BRATS-MICCAI (2013)
Fourati, J., Othmani, M., Ltifi, H.: A hybrid model based on convolutional neural networks and long short-term memory for rest tremor classification. In: ICAART, vol. 3, pp. 75–82 (2022)
Salah, K.B., Othmani, M., Kherallah, M.: A novel approach for human skin detection using convolutional neural network. Vis. Comput. 38(5), 1833–1843 (2021). https://doi.org/10.1007/s00371-021-02108-3
Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. LNCS, vol. 9556. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_12
Havaei, M., et al.: Brain tumour segmentation with deep neural networks. arXiv preprint arXiv:1505.03540. (2015)
Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65
Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_39
Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An Ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen, R., Pedersen, K. (eds.) Image Analysis. SCIA 2015. LNCS, vol. 9127. (2015). https://doi.org/10.1007/978-3-319-19665-7_17
Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)
Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_1
Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks in proc of BRATS-MICCAI (2014)
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51
Havaei, M., et al.: Brain tumour segmentation with deep neural networks. arXiv preprint (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)
Ltifi, H., Benmohamed, E., Kolski, C., Ben Ayed, M.: Adapted visual analytics process for intelligent decision-making: application in a medical context. Int. J. Inform. Technol. Dec. Mak. 19(01), 241–282 (2020)
Ltifi, H., Ben Ayed, M., Kolski, C., Alimi, A.M.: HCI-enriched approach for DSS development: the UP/U approach. In: 2009 IEEE Symposium on Computers and Communications, pp. 895–900. IEEE (2009)
Ltifi, H., Ben Ayed, M., Trabelsi, G., Alimi, A.M.: Using perspective wall to visualize medical data in the Intensive Care Unit. In: 2012 IEEE 12th International Conference on Data Mining Workshops, pp. 72–78, IEEE (2012)
Jemmaa, A.B., Ltifi, H., Ayed, M.B.: Multi-agent architecture for visual intelligent remote healthcare monitoring system. In: Abraham, A., Han, S., Al-Sharhan, S., Liu, H. (eds.) Hybrid Intelligent Systems. HIS 2016. AISC, vol. 420. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27221-4_18
Ellouzi, H., Ltifi, H., Ben Ayed, M.: New multi-agent architecture of visual intelligent decision support systems application in the medical field. In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA) pp. 1–8. IEEE(2015)
Benjemmaa, A., Ltifi, H., Ayed, M.B.: Design of remote heart monitoring system for cardiac patients. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 963–976. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_81
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guennich, A., Othmani, M., Ltifi, H. (2023). An Improved Model for Semantic Segmentation of Brain Lesions Using CNN 3D. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-35501-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35500-4
Online ISBN: 978-3-031-35501-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)