Skip to main content

An Improved Model for Semantic Segmentation of Brain Lesions Using CNN 3D

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

Abstract

The implementation of accurate automatic algorithms for brain tumor segmentation could improve disease diagnosis, treatment monitoring, and make large-scale studies of the pathology possible. In this study, we optimize the architecture used for the challenging task of brain lesion segmentation, which is based on the 3D convolutional neural network. In order to integrate broader local and contextual information, we use a two-channel architecture that processes input images at multiple scales simultaneously. Furthermore, we show that optimizing at the momentum value level, helps us achieve better results in the DSC, accuracy and sensitivity criteria. Our method has also been tested by the BRATS 2015 training dataset, where it has performed very well despite the simplicity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamnitsas, K., et al.: Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2016)

    Article  Google Scholar 

  2. Ding, K., et al.: Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J. Neurotrauma 25(12), 1433–1440 (2008)

    Article  Google Scholar 

  3. Moen, K.G., et al.: A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 83, 1193–1200 ((2012))

    Google Scholar 

  4. Maas, A.I., et al.: Participants, Investigators, et al. Collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76(1), 67–80 (2015)

    Google Scholar 

  5. Warner, M.A.: Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J. Neurotrauma 27(12), 2121–2130 (2010)

    Google Scholar 

  6. Carey, L.M., et al.: Connelly Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurol. 8(5), 507–527 (2013)

    Google Scholar 

  7. Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)

    Article  Google Scholar 

  8. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS) Med. Imaging IEEE Trans. 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  9. Irimia, A., et al.: Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. NeuroImage: Clin. 1(1), 1–17 (2012)

    Google Scholar 

  10. Yuh, E.L., Cooper, S.R., Ferguson, A.R., Manley G.T.: Quantitative CT improves outcome prediction in acute traumatic brain injury. J. Neurotrauma 29(5), 735–746 (2012)

    Google Scholar 

  11. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Google Scholar 

  12. Doyle, S., Vasseur, F., Dojat, M., Forbes, F.: Fully automatic brain tumour segmentation from multiple MR sequences using hidden markov fields and variational EM Procs. NCI-MICCAI BRATS, pp. 18–22 (2013)

    Google Scholar 

  13. Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. LNCS vol. 6892. Springer, Berlin, Heidelberg (2011).

    Google Scholar 

  14. Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Joint tumor segmentation and dense deformable registration of brain MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 651–658. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_80

    Chapter  Google Scholar 

  15. Liu, X., Niethammer, M., Kwitt, R., McCormick, M., Aylward, S.: Low-rank to the rescue – atlas-based analyses in the presence of pathologies. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 97–104. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_13

    Chapter  Google Scholar 

  16. Weiss, N., Rueckert, D., Rao, A.: Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_92

    Chapter  Google Scholar 

  17. Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 606–613. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_76

    Chapter  Google Scholar 

  18. Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S.: Template-based multimodal joint generative model of brain data. In: Ourselin, S., Alexander, D., Westin, C.F., Cardoso, M. (eds.) Information Processing in Medical Imaging. IPMI 2015. LNCS, vol. 9123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_2

  19. Erihov, M., Alpert, S., Kisilev, P., Hashoul, S.: A cross saliency approach to asymmetry-based tumor detection. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. LNCS, vol. 9351. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_7

  20. Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 111–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_14

    Chapter  Google Scholar 

  21. Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

  22. Rao, A., Ledig, C., Newcombe, V., Menon, D., Rueckert, D.: Contusion segmentation from subjects with traumatic brain injury: a random forest framework. In: 2014 IEEE 11th International Symposium on, Biomedical Imaging (ISBI), pp. 333–336. IEEE (2014)

    Google Scholar 

  23. Tustison, N., Wintermark, M., Durst, C., Brian, A.: ANTs and Arboles in proc of BRATS-MICCAI (2013)

    Google Scholar 

  24. http://braintumorsegmentation.org/, www.isles-challenge.org

  25. Fourati, J., Othmani, M., Ltifi, H.: A hybrid model based on convolutional neural networks and long short-term memory for rest tremor classification. In: ICAART, vol. 3, pp. 75–82 (2022)

    Google Scholar 

  26. Salah, K.B., Othmani, M., Kherallah, M.: A novel approach for human skin detection using convolutional neural network. Vis. Comput. 38(5), 1833–1843 (2021). https://doi.org/10.1007/s00371-021-02108-3

    Article  Google Scholar 

  27. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. LNCS, vol. 9556. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_12

  28. Havaei, M., et al.: Brain tumour segmentation with deep neural networks. arXiv preprint arXiv:1505.03540. (2015)

  29. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  30. Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_39

    Chapter  Google Scholar 

  31. Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An Ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen, R., Pedersen, K. (eds.) Image Analysis. SCIA 2015. LNCS, vol. 9127. (2015). https://doi.org/10.1007/978-3-319-19665-7_17

  32. Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)

    Google Scholar 

  33. Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_1

    Chapter  Google Scholar 

  34. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks in proc of BRATS-MICCAI (2014)

    Google Scholar 

  35. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  36. Havaei, M., et al.: Brain tumour segmentation with deep neural networks. arXiv preprint (2015)

    Google Scholar 

  37. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  38. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  41. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  42. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)

  43. Ltifi, H., Benmohamed, E., Kolski, C., Ben Ayed, M.: Adapted visual analytics process for intelligent decision-making: application in a medical context. Int. J. Inform. Technol. Dec. Mak. 19(01), 241–282 (2020)

    Google Scholar 

  44. Ltifi, H., Ben Ayed, M., Kolski, C., Alimi, A.M.: HCI-enriched approach for DSS development: the UP/U approach. In: 2009 IEEE Symposium on Computers and Communications, pp. 895–900. IEEE (2009)

    Google Scholar 

  45. Ltifi, H., Ben Ayed, M., Trabelsi, G., Alimi, A.M.: Using perspective wall to visualize medical data in the Intensive Care Unit. In: 2012 IEEE 12th International Conference on Data Mining Workshops, pp. 72–78, IEEE (2012)

    Google Scholar 

  46. Jemmaa, A.B., Ltifi, H., Ayed, M.B.: Multi-agent architecture for visual intelligent remote healthcare monitoring system. In: Abraham, A., Han, S., Al-Sharhan, S., Liu, H. (eds.) Hybrid Intelligent Systems. HIS 2016. AISC, vol. 420. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27221-4_18

  47. Ellouzi, H., Ltifi, H., Ben Ayed, M.: New multi-agent architecture of visual intelligent decision support systems application in the medical field. In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA) pp. 1–8. IEEE(2015)

    Google Scholar 

  48. Benjemmaa, A., Ltifi, H., Ayed, M.B.: Design of remote heart monitoring system for cardiac patients. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 963–976. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_81

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala Guennich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guennich, A., Othmani, M., Ltifi, H. (2023). An Improved Model for Semantic Segmentation of Brain Lesions Using CNN 3D. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_18

Download citation

Publish with us

Policies and ethics