Skip to main content

Dental Treatment Type Detection in Panoramic X-Rays Using Deep Learning

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

Detection of treatment types in dental panoramic radiographs is still an open problem as the position of the tooth are arbitrarily oriented and usually closely packed. The majority of current two-stage anchor-based detectors are used in oriented object detection techniques. Nevertheless, the positive and negative anchor boxes tend to be severely biased in anchor-based detectors. In this work, we optimized a single-stage anchor-free deep learning model to detect and classify the teeth with or without treatment. We aim to detect dental restoration, root canal treatment (RCT), and teeth without treatment accurately in a full scan of dental panoramic radiographs. We trained our model on 500 images and tested it on 93 images from a dataset of 593 dental panoramic x-rays. The proposed work performance on overall dental treatment detection with an average precision (AP) of 85%. The result of this study suggested that RCT was recognized and predicted with the highest accuracy of 91% AP score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Availability of Code

GitHub repository link with the entire python code: https://github.com/Nripendrakr123/Detection_of_tooth_treatment_type.

References

  1. Raza, K., Singh, N.K.: A tour of unsupervised deep learning for medical image analysis. Curr. Med. Imaging 17(9), 1059–1077 (2021). https://doi.org/10.2174/1573405617666210127154257

    Article  Google Scholar 

  2. Singh, N.K., Raza, K.: Medical image generation using generative adversarial networks: a review. In: Patgiri, R., Biswas, A., Roy, P. (eds.) Health Informatics: A Computational Perspective in Healthcare. SCI, vol. 932, pp. 77–96. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9735-0_5

    Chapter  Google Scholar 

  3. Wu, H., Wu, Z.: A few-shot dental object detection method based on a priori knowledge transfer. Symmetry (Basel) 14(6), 1129 (2022). https://doi.org/10.3390/sym14061129

    Article  Google Scholar 

  4. Chu, C.S., Lee, N.P., Adeoye, J., Thomson, P., Choi, S.W.: Machine learning and treatment outcome prediction for oral cancer. J. Oral Pathol. Med. 49(10), 977–985 (2020). https://doi.org/10.1111/jop.13089

    Article  Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (December 2016). https://doi.org/10.1109/CVPR.2016.91

  7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020). https://doi.org/10.1109/TPAMI.2018.2844175

    Article  Google Scholar 

  10. Lin, Y., Feng, P., Guan, J.: IENet: Interacting Embranchment One Stage Anchor Free Detector for Orientation Aerial Object Detection. ArXiv:abs/1912.00969 (2019)

    Google Scholar 

  11. Babu, A., Andrew Onesimu, J., Martin Sagayam, K.: Artificial intelligence in dentistry: concepts, applications and research challenges. In: E3S Web Conference, vol. 297 (2021). https://doi.org/10.1051/e3sconf/202129701074

  12. Kumar, A., Bhadauria, H.S., Singh, A.: Descriptive analysis of dental X-ray images using various practical methods: a review. PeerJ Comput. Sci. 7, e620 (2021). https://doi.org/10.7717/peerj-cs.620

    Article  Google Scholar 

  13. Singh, N.K., Raza, K.: Progress in deep learning-based dental and maxillofacial image analysis: a systematic review. Expert Syst. Appl. 199, 116968 (2022). https://doi.org/10.1016/j.eswa.2022.116968

    Article  Google Scholar 

  14. Yeshua, T., et al.: Automatic detection and classification of dental restorations in panoramic radiographs. Issues Inform. Sci. Inf. Technol. 16, 116968 (2019). https://doi.org/10.28945/4306

    Article  Google Scholar 

  15. Abdalla-Aslan, R., Yeshua, T., Kabla, D., Leichter, I., Nadler, C.: An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 130(5), 593–602 (2020). https://doi.org/10.1016/j.oooo.2020.05.012

  16. Gurses, A., Oktay, A.B.: Tooth restoration and dental work detection on panoramic dental images via CNN. In: TIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020 (2020). https://doi.org/10.1109/TIPTEKNO50054.2020.9299272

  17. Yüksel, A.E., et al.: Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-021-90386-1

    Article  Google Scholar 

  18. Park, J., Lee, J., Moon, S., Lee, K.: Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images. Appl. Sci. 12(3), 1595 (2022). https://doi.org/10.3390/app12031595

    Article  Google Scholar 

  19. Jader, G., Fontineli, J., Ruiz, M., Abdalla, K., Pithon, M., Oliveira, L.: Deep instance segmentation of teeth in panoramic x-ray images. In: Proceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018, pp. 400–407 (2019). https://doi.org/10.1109/SIBGRAPI.2018.00058

  20. Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia (2019). https://doi.org/10.1145/3343031.3350535

  21. Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., Metaxas, D.: Oriented object detection in aerial images with box boundary-aware vectors. In: Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 (2021). https://doi.org/10.1109/WACV48630.2021.00220

  22. Merget, D., Rock, M., Rigoll, G.: Robust facial landmark detection via a fully-convolutional local-global context network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00088

  23. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. Int. J. Comput. Vision 128(3), 642–656 (2019). https://doi.org/10.1007/s11263-019-01204-1

    Article  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (December 2016). https://doi.org/10.1109/CVPR.2016.90

  25. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, N.K., Faisal, M., Hasan, S., Goshwami, G., Raza, K. (2023). Dental Treatment Type Detection in Panoramic X-Rays Using Deep Learning. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_3

Download citation

Publish with us

Policies and ethics