Abstract
Detection of treatment types in dental panoramic radiographs is still an open problem as the position of the tooth are arbitrarily oriented and usually closely packed. The majority of current two-stage anchor-based detectors are used in oriented object detection techniques. Nevertheless, the positive and negative anchor boxes tend to be severely biased in anchor-based detectors. In this work, we optimized a single-stage anchor-free deep learning model to detect and classify the teeth with or without treatment. We aim to detect dental restoration, root canal treatment (RCT), and teeth without treatment accurately in a full scan of dental panoramic radiographs. We trained our model on 500 images and tested it on 93 images from a dataset of 593 dental panoramic x-rays. The proposed work performance on overall dental treatment detection with an average precision (AP) of 85%. The result of this study suggested that RCT was recognized and predicted with the highest accuracy of 91% AP score.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Availability of Code
GitHub repository link with the entire python code: https://github.com/Nripendrakr123/Detection_of_tooth_treatment_type.
References
Raza, K., Singh, N.K.: A tour of unsupervised deep learning for medical image analysis. Curr. Med. Imaging 17(9), 1059–1077 (2021). https://doi.org/10.2174/1573405617666210127154257
Singh, N.K., Raza, K.: Medical image generation using generative adversarial networks: a review. In: Patgiri, R., Biswas, A., Roy, P. (eds.) Health Informatics: A Computational Perspective in Healthcare. SCI, vol. 932, pp. 77–96. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9735-0_5
Wu, H., Wu, Z.: A few-shot dental object detection method based on a priori knowledge transfer. Symmetry (Basel) 14(6), 1129 (2022). https://doi.org/10.3390/sym14061129
Chu, C.S., Lee, N.P., Adeoye, J., Thomson, P., Choi, S.W.: Machine learning and treatment outcome prediction for oral cancer. J. Oral Pathol. Med. 49(10), 977–985 (2020). https://doi.org/10.1111/jop.13089
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (December 2016). https://doi.org/10.1109/CVPR.2016.91
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020). https://doi.org/10.1109/TPAMI.2018.2844175
Lin, Y., Feng, P., Guan, J.: IENet: Interacting Embranchment One Stage Anchor Free Detector for Orientation Aerial Object Detection. ArXiv:abs/1912.00969 (2019)
Babu, A., Andrew Onesimu, J., Martin Sagayam, K.: Artificial intelligence in dentistry: concepts, applications and research challenges. In: E3S Web Conference, vol. 297 (2021). https://doi.org/10.1051/e3sconf/202129701074
Kumar, A., Bhadauria, H.S., Singh, A.: Descriptive analysis of dental X-ray images using various practical methods: a review. PeerJ Comput. Sci. 7, e620 (2021). https://doi.org/10.7717/peerj-cs.620
Singh, N.K., Raza, K.: Progress in deep learning-based dental and maxillofacial image analysis: a systematic review. Expert Syst. Appl. 199, 116968 (2022). https://doi.org/10.1016/j.eswa.2022.116968
Yeshua, T., et al.: Automatic detection and classification of dental restorations in panoramic radiographs. Issues Inform. Sci. Inf. Technol. 16, 116968 (2019). https://doi.org/10.28945/4306
Abdalla-Aslan, R., Yeshua, T., Kabla, D., Leichter, I., Nadler, C.: An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 130(5), 593–602 (2020). https://doi.org/10.1016/j.oooo.2020.05.012
Gurses, A., Oktay, A.B.: Tooth restoration and dental work detection on panoramic dental images via CNN. In: TIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020 (2020). https://doi.org/10.1109/TIPTEKNO50054.2020.9299272
Yüksel, A.E., et al.: Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-021-90386-1
Park, J., Lee, J., Moon, S., Lee, K.: Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images. Appl. Sci. 12(3), 1595 (2022). https://doi.org/10.3390/app12031595
Jader, G., Fontineli, J., Ruiz, M., Abdalla, K., Pithon, M., Oliveira, L.: Deep instance segmentation of teeth in panoramic x-ray images. In: Proceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018, pp. 400–407 (2019). https://doi.org/10.1109/SIBGRAPI.2018.00058
Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia (2019). https://doi.org/10.1145/3343031.3350535
Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., Metaxas, D.: Oriented object detection in aerial images with box boundary-aware vectors. In: Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 (2021). https://doi.org/10.1109/WACV48630.2021.00220
Merget, D., Rock, M., Rigoll, G.: Robust facial landmark detection via a fully-convolutional local-global context network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00088
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. Int. J. Comput. Vision 128(3), 642–656 (2019). https://doi.org/10.1007/s11263-019-01204-1
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (December 2016). https://doi.org/10.1109/CVPR.2016.90
Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Singh, N.K., Faisal, M., Hasan, S., Goshwami, G., Raza, K. (2023). Dental Treatment Type Detection in Panoramic X-Rays Using Deep Learning. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-35501-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35500-4
Online ISBN: 978-3-031-35501-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)