Skip to main content

Data-driven Real-time Short-term Prediction of Air Quality: Comparison of ES, ARIMA, and LSTM

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 373 Accesses

Abstract

Air pollution is a worldwide issue that affects the lives of many people in urban areas. It is considered that the air pollution may lead to heart and lung diseases. A careful and timely forecast of the air quality could help to reduce the exposure risk for affected people. In this paper, we use a data-driven approach to predict air quality based on historical data. We compare three popular methods for time series prediction: Exponential Smoothing (ES), Auto-Regressive Integrated Moving Average (ARIMA) and Long short-term memory (LSTM). Considering prediction accuracy and time complexity, our experiments reveal that for short-term air pollution prediction ES performs better than ARIMA and LSTM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  2. Alsouda, Y., Pllana, S., Kurti, A.: A machine learning driven IoT solution for noise classification in smart cities. In: Machine Learning Driven Technologies and Architectures for Intelligent Internet of Things (ML-IoT), pp. 1–6. Euromicro (2018). https://doi.org/10.48550/arXiv.1809.00238

  3. Alsouda, Y., Pllana, S., Kurti, A.: IoT-based Urban Noise Identification Using Machine Learning: Performance of SVM, KNN, Bagging, and Random Forest. In: Proceedings of the International Conference on Omni-Layer Intelligent Systems. COINS 2019, New York, NY, USA, pp. 62–67. ACM (2019). https://doi.org/10.1145/3312614.3312631

  4. Amaral, V., et al.: Programming languages for data-intensive HPC applications: a systematic mapping study. Parallel Comput. 91, 102584 (2020). https://doi.org/10.1016/j.parco.2019.102584

    Article  MathSciNet  Google Scholar 

  5. Amjad, M., Shah, D.: Trading bitcoin and online time series prediction. In: NIPS 2016 Time Series Workshop, pp. 1–15 (2017)

    Google Scholar 

  6. Benkner, S., et al.: PEPPHER: efficient and productive usage of hybrid computing systems. IEEE Micro 31(5), 28–41 (2011). https://doi.org/10.1109/MM.2011.67

    Article  Google Scholar 

  7. Das, P.K., A, D.V., Meher, S., Panda, R., Abraham, A.: A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic leukemia. IEEE Access 10, 81741–81763 (2022). https://doi.org/10.1109/ACCESS.2022.3196037

  8. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd (2017)

    Google Scholar 

  9. Le, D.: Real-time air pollution prediction model based on spatiotemporal big data. arXiv preprint arXiv:1805.00432 (2018)

  10. Le Borgne, Y.A., Santini, S., Bontempi, G.: Adaptive model selection for time series prediction in wireless sensor networks. Signal Process. 87(12), 3010–3020 (2007)

    Article  MATH  Google Scholar 

  11. Longcore, T., Rich, C.: Ecological light pollution. Front. Ecol. Environ. 2(4), 191–198 (2004)

    Article  Google Scholar 

  12. Massaron, L., Boschetti, A.: Regression Analysis with Python. Packt Publishing Ltd. (2016)

    Google Scholar 

  13. Memeti, S., Pllana, S.: Accelerating DNA Sequence Analysis Using Intel(R) Xeon Phi(TM). In: 2015 IEEE Trustcom/BigDataSE/ISPA. vol. 3, pp. 222–227 (2015). https://doi.org/10.1109/Trustcom.2015.636

  14. Memeti, S., Pllana, S.: Optimization of heterogeneous systems with AI planning heuristics and machine learning: a performance and energy aware approach. Computing 103(12), 2943–2966 (2021). https://doi.org/10.1007/s00607-021-01017-6

    Article  MathSciNet  Google Scholar 

  15. Ochando, L.C., Julián, C.I.F., Ochando, F.C., Ferri, C.: Airvlc: an application for real-time forecasting urban air pollution. In: Proceedings of the 2nd International Conference on Mining Urban Data, vol. 1392, pp. 72–79. MUD 2015, CEUR-WS.org, Aachen, DE (2015)

    Google Scholar 

  16. Petrushevski, S.: Air pollution in Skopje from 2008 to 2018 (2018). https://www.kaggle.com/cokastefan/pm10-pollution-data-in-skopje-from-2008-to-2018

  17. Pllana, S., Xhafa, F.: Programming Multicore and Many-core Computing Systems. Wiley, Hoboken (2017). https://doi.org/10.1002/9781119332015

  18. Qin, X., Mahmassani, H.S.: Adaptive calibration of dynamic speed-density relations for online network traffic estimation and prediction applications. Transp. Res. Record 1876(1), 82–89 (2004)

    Article  Google Scholar 

  19. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons (2016)

    Google Scholar 

  20. Shaban, K.B., Kadri, A., Rezk, E.: Urban air pollution monitoring system with forecasting models. IEEE Sensors J. 16(8), 2598–2606 (2016). https://doi.org/10.1109/JSEN.2016.2514378

    Article  Google Scholar 

  21. Siami-Namini, S., Namin, A.S.: Forecasting economics and financial time series: Arima vs. lstm. arXiv preprint arXiv:1803.06386 (2018)

  22. Smith, T.G.: pmdarima: Arima estimators for Python (2017)

    Google Scholar 

  23. Subramanian, V.N.: Data analysis for predicting air pollutant concentration in smart city uppsala (2016)

    Google Scholar 

  24. Viebke, A., Memeti, S., Pllana, S., Abraham, A.: CHAOS: a parallelization scheme for training convolutional neural networks on Intel Xeon Phi. J. Supercomput. 75(1), 197–227 (2019). https://doi.org/10.1007/s11227-017-1994-x

    Article  Google Scholar 

  25. Yang, D., Wang, J., Yan, X., Liu, H.: Subway air quality modeling using improved deep learning framework. Process Saf. Environ. Prot. 163, 487–497 (2022). https://doi.org/10.1016/j.psep.2022.05.055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabri Pllana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Talamanova, I., Pllana, S. (2023). Data-driven Real-time Short-term Prediction of Air Quality: Comparison of ES, ARIMA, and LSTM. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_32

Download citation

Publish with us

Policies and ethics