Abstract
A modern facial recognition system cannot exist without anti-spoofing protection, such as protection from fake biometric samples. The most common way to get a face image is an optical camera. Due to the vast variability of the conditions for obtaining the picture, the problem is non-trivial. Currently, there is no out-of-the-box solution. In this article, we aim to combine different approaches and provide an effective domain generalization method for convolutional neural networks based on face padding. Also, we suggest a few methods of passing partial information about faces for training.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing based on color texture analysis. IEEE International Conference on Image Processing (ICIP), pp. 2636–2640 (2015)
Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: OULU-NPU: a mobile face presentation attack database with real-world variations. In: 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), pp. 612–618 (2017). https://doi.org/10.1109/FG.2017.77
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Feng, H., et al.: Learning generalized spoof cues for face anti-spoofing (2020). https://doi.org/10.48550/ARXIV.2005.03922. https://arxiv.org/abs/2005.03922
de Freitas Pereira, T., Anjos, A., De Martino, J.M., Marcel, S.: LBP – TOP based countermeasure against face spoofing attacks. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 121–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37410-4_11
Komulainen, J., Hadid, A.: Context based face anti-spoofing. IEEE Sixth International Conference on Biometrics: theory, Applications and Systems (BTAS), pp. 1–8 (2013)
Kumar, S., Singh, S., Kumar, J.: A comparative study on face spoofing attacks. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 1104–1108 (2017). https://doi.org/10.1109/CCAA.2017.8229961
Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-spoofing approach using partial convolutional neural network. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2016). https://doi.org/10.1109/IPTA.2016.7821013
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6738–6746 (2017). https://doi.org/10.1109/CVPR.2017.713
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474
Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. CoRR abs/1610.02391 (2016). http://arxiv.org/abs/1610.02391
Shi, Y., Jain, A.: Probabilistic face embeddings. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6901–6910 (2019). https://doi.org/10.1109/ICCV.2019.00700
Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015). https://doi.org/10.1109/TIFS.2015.2400395
Yu, Z., Li, X., Shi, J., Xia, Z., Zhao, G.: Revisiting pixel-wise supervision for face anti-spoofing. IEEE Trans. Biometrics Behavior Identity Sci. 3(3), 285–295 (2021). https://doi.org/10.1109/TBIOM.2021.3065526
Zhang, K.Y., et al.: Structure destruction and content combination for face anti-spoofing. In: 2021 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–6 (2021). https://doi.org/10.1109/IJCB52358.2021.9484395
Zhang, Y., et al.: CelebA-Spoof: large-scale face anti-spoofing dataset with rich annotations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 70–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_5
Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31 (2012). https://doi.org/10.1109/ICB.2012.6199754
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zainulin, R., Solovyev, D., Shnyrev, A., Isaev, M., Shipunov, T. (2023). Face Padding as a Domain Generalization for Face Anti-spoofing. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-35501-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35500-4
Online ISBN: 978-3-031-35501-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)