Skip to main content

On the Use of Reinforcement Learning for Real-Time System Design and Refactoring

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 216 Accesses

Abstract

One crucial issue during the design of real-time embedded systems is the deployment of tasks on distributed processors. Indeed, due to the constrained resources of these systems and their real-time aspect, the allocation model must be valid and optimal. This design phase is generally time-consuming and difficult, especially when the design decisions need to be frequently updated (i.e., refactoring). To address this problem, we provide in this paper an optimization model based on the reinforcement learning (RL) approach. The proposed model produces the optimal deployment model, ensuring that timing properties are respected while minimizing the number of active processors. After a refactoring request, the generation of the new solution in the proposed RL model is greatly based on the initial one. Indeed, just a minor part of the solution has to be updated, which is beneficial since it results in a shorter generation time. The efficiency of the proposed model is demonstrated through a case study and performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barto, A.G.: Reinforcement learning: an introduction. In: Sutton, R.S. (ed.) SIAM Review, vol. 63, issue 2, p. 423 (2021)

    Google Scholar 

  2. Caviglione, L., Gaggero, M., Paolucci, M., Ronco, R.: Deep reinforcement learning for multi-objective placement of virtual machines in cloud datacenters. Soft. Comput. 25(19), 12569–12588 (2021)

    Article  Google Scholar 

  3. Kashani, M.H., Zarrabi, H., Javadzadeh, G.: A new metaheuristic approach to task assignment problem in distributed systems. In: 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 0673–0677. IEEE (2017)

    Google Scholar 

  4. Kumar, M., Husain, D., Upreti, N., Gupta, D., et al.: Genetic algorithm: review and application (2010)

    Google Scholar 

  5. Lakhdhar, W., Mzid, R., Khalgui, M., Treves, N.: MILP-based approach for optimal implementation of reconfigurable real-time systems. In: International Conference on Software Engineering and Applications, vol. 2, pp. 330–335. SCITEPRESS (2016)

    Google Scholar 

  6. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, N., et al.: A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 372–382. IEEE (2017)

    Google Scholar 

  8. Mehiaoui, A., Wozniak, E., Babau, J.P., Tucci-Piergiovanni, S., Mraidha, C.: Optimizing the deployment of tree-shaped functional graphs of real-time system on distributed architectures. Autom. Softw. Eng. 26(1), 1–57 (2019)

    Article  Google Scholar 

  9. Saxena, P., Menezes, N., Cocchini, P., Kirkpatrick, D.A.: The scaling challenge: can correct-by-construction design help? In: Proceedings of the 2003 International Symposium on Physical Design, pp. 51–58 (2003)

    Google Scholar 

  10. Zhu, Q., Zeng, H., Zheng, W., Natale, M.D., Sangiovanni-Vincentelli, A.: Optimization of task allocation and priority assignment in hard real-time distributed systems. ACM Trans. Embedded Comput. Syst. (TECS) 11(4), 1–30 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhta Haouari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haouari, B., Mzid, R., Mosbahi, O. (2023). On the Use of Reinforcement Learning for Real-Time System Design and Refactoring. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_50

Download citation

Publish with us

Policies and ethics