Skip to main content

Assessment of Epileptic Gamma Oscillations’ Networks Connectivity

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 359 Accesses

Abstract

Source localization consists in defining exact position of the brain generators for a time course obtained from a surface electrophysiological signal (EEG, MEG), in order to determine with a high precision the epileptogenic zones. We applied diverse inverse problem techniques to obtain this resolution. These techniques present various hypotheses and specific epileptic network connectivity. We proposed here to rate the performance of issued inverse problem in identifying epileptic zone. Then, we used four methods of inverse problem to explain cortical areas and neural generators of excessive discharges. We computed network connectivity of each technique. We applied a pre processing chain to assess the rate of epileptic gamma oscillation connectivity among MEG of each technique. Wavelet Maximum Entropy on the Mean (wMEM) proved a high matching between MEG network connectivity based on Correlation, Coherence, Granger Causality (GC) and Phase Locking Value (PLV) between active sources, followed by Dynamical Statistical Parametric Mapping (dSPM), standardized low-resolution brain electromagnetic tomography (sLORETA), and Minimum norm estimation (MNE). The problem techniques studied are at least able to find theoretically part of seizure onset zone. wMEM and dSPM represent the most powerful connection of all techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mamelak, A.N., Akhtari, M., Sutherling, W.W., Lopez, N.: Mamelak 4mm between 2 dipoles.pdf, vol. 97, pp. 865–873 (2002)

    Google Scholar 

  2. David, O., Garnero, L., Cosmelli, D., Varela, F.J.: Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony. IEEE Trans. Biomed. Eng. 49(9), 975–987 (2002). https://doi.org/10.1109/TBME.2002.802013

    Article  Google Scholar 

  3. Horwitz, B.: The elusive concept of brain connectivity. Neuroimage 19(2), 466–470 (2003). https://doi.org/10.1016/S1053-8119(03)00112-5

    Article  Google Scholar 

  4. Darvas, F., Pantazis, D., Kucukaltun-Yildirim, E., Leahy, R.M.: Mapping human brain function with MEG and EEG: methods and validation. Neuroimage 23(SUPPL. 1), 289–299 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.014

    Article  Google Scholar 

  5. Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., Salmelin, R.: Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc. Natl. Acad. Sci. U. S. A. 98(2), 694–699 (2001). https://doi.org/10.1073/pnas.98.2.694

    Article  Google Scholar 

  6. Peled, A., Geva, A.B., Kremen, W.S., Blankfeld, H.M., Esfandiarfard, R., Nordahl, T.E.: Functional connectivity and working memory in schizophrenia: an EEG study. Int. J. Neurosci. 106(1–2), 47–61 (2001). https://doi.org/10.3109/00207450109149737

    Article  Google Scholar 

  7. Kaminski, M.J., Blinowska, K.J.: A new method of the description of the information flow in the brain structures. Biol. Cybern. 65(3), 203–210 (1991). https://doi.org/10.1007/BF00198091

    Article  MATH  Google Scholar 

  8. Nawel, J., Abir, H., Ichrak, B., Amal, N., Chokri, B.A.: A comparison of inverse problem methods for source localization of epileptic meg spikes. In: Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, pp. 867–870 (2019). https://doi.org/10.1109/BIBE.2019.00161

  9. Jmail, N., Gavaret, M., Bartolomei, F., Chauvel, P., Badier, J.-M., Bénar, C.-G.: Comparison of brain networks during interictal oscillations and spikes on magnetoencephalography and intracerebral EEG. Brain Topogr. 29(5), 752–765 (2016). https://doi.org/10.1007/s10548-016-0501-7

    Article  Google Scholar 

  10. Hadriche, A., ElBehy, I., Hajjej, A., Jmail, N.: Evaluation of techniques for predicting a build up of a seizure. In: Abraham, A., Gandhi, N., Hanne, T., Hong, T.-P., Nogueira Rios, T., Ding, W. (eds.) ISDA 2021. LNNS, vol. 418, pp. 816–827. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96308-8_76

    Chapter  Google Scholar 

  11. Hadriche, A., Jmail, N.: A build up of seizure prediction and detection Software: a review. J. Clin. Images Med. Case Reports 2(2), 1–2 (2021). https://doi.org/10.52768/2766-7820/1087

    Article  Google Scholar 

  12. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004). https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  Google Scholar 

  13. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 1–13 (2011). https://doi.org/10.1155/2011/879716

    Article  Google Scholar 

  14. Hincapié, A.S., et al.: MEG connectivity and power detections with minimum norm estimates require different regularization parameters. Comput. Intell. Neurosci. 2016, 12–18 (2016). https://doi.org/10.1155/2016/3979547

    Article  Google Scholar 

  15. Borchers, B., Uram, T., Hendrickx, J.M.H.: Tikhonov regularization of electrical conductivity depth profiles in field soils. Soil Sci. Soc. Am. J. 61(4), 1004–1009 (1997). https://doi.org/10.2136/sssaj1997.03615995006100040002x

    Article  Google Scholar 

  16. Pascual-Marqui, R.D., Esslen, M., Kochi, K., Lehmann, D.: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24(SUPPL. C), 91–95 (2002)

    Google Scholar 

  17. McDonald, C.R., et al.: Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia 50(10), 2256–2266 (2009). https://doi.org/10.1111/j.1528-1167.2009.02172.x

    Article  Google Scholar 

  18. Chowdhury, R.A., Lina, J.M., Kobayashi, E., Grova, C.: MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical Bayesian approaches. PLoS ONE 8(2), e55969 (2013). https://doi.org/10.1371/journal.pone.0055969

    Article  Google Scholar 

  19. Lina, J.M., Chowdhury, R., Lemay, E., Kobayashi, E., Grova, C.: Wavelet-based localization of oscillatory sources from magnetoencephalography data. IEEE Trans. Biomed. Eng. 61(8), 2350–2364 (2014). https://doi.org/10.1109/TBME.2012.2189883

    Article  Google Scholar 

  20. Tass, P., et al.: Tass1998, pp. 1–4 (1998). https://doi.org/10.1103/PhysRevLett.81.3291

Download references

Acknowledgment

This work was supported by 20PJEC0613 “Hatem Ben Taher Tunisian Project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Necibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Necibi, A., Hadriche, A., Jmail, N. (2023). Assessment of Epileptic Gamma Oscillations’ Networks Connectivity. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_9

Download citation

Publish with us

Policies and ethics