Skip to main content

Continuous Authentication of Tablet Users Using Raw Swipe Characteristics: Tree Based Approaches

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

In terms of portability and convenience of usage, tablets are user-friendly devices next to smartphones. Operated through their relatively bigger sized touchscreens with respect to smartphones, these devices have found applications in the education sector, conducting surveys, biological and medical areas and as security control devices, to include a few. Albeit being convenient, the security of these devices can be easily compromised despite being equipped with some primary authentication mechanism. This paper explores secondary security measures that can complement the primary authentication mechanism using unprocessed swiping activity data from the user. Keeping in view the fact that research works conducted in this domain being few in numbers, this paper proposes a framework for continuously authenticating a tablet’s user. Implemented on a contemporary dataset that include both smartphone and tablet swipe vectors this tree based framework exhibited acceptable authentication performance compared to other such works. This was achieved without requiring the data to be preprocessed or scaled and based on single user swipes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsaleh, M., Alomar, N., Alarifi, A.: Smartphone users: understanding how security mechanisms are perceived and new persuasive methods. PLoS ONE 12(3), e0173284 (2017). https://doi.org/10.1371/journal.pone.0173284

    Article  Google Scholar 

  2. Kim, S., Yao, W., Du, X.: Exploring older adults’ adoption and use of a tablet computer during COVID-19: longitudinal qualitative study. JMIR Aging 5(1), e32957 (2022)

    Article  Google Scholar 

  3. Matulic, F., Vogel, D.: Terrain modelling with a pen & touch tablet and mid-air gestures in virtual reality. In: CHI 2022 Extended Abstracts, April 29– 05 May 2022, New Orleans, LA, USA. ACM (2022). https://doi.org/10.1145/3491101.3519867, ISBN 978-1-4503-9156-6/22/04

  4. Johnson, E.A.: Touch display? a novel input/output device for computers. Electron. Lett. 1(8), 219–220 (1965). https://doi.org/10.1049/el:19650200.ISSN:0013-5194

    Article  Google Scholar 

  5. Johnson, E.A.: Touch displays: a programmed man-machine interface. Ergonomics 10(2), 271–277 (1967). https://doi.org/10.1080/00140136708930868. Taylor and Francis, Published online: 25 Apr 2007. Accessed 4 Sep 2022

  6. Elprocus page. https://www.elprocus.com/touch-screen-technology-working/. Accessed 4 Sep 2022

  7. Arstechnica page. https://arstechnica.com/gadgets/2013/04/from-touch-displays-to-the-surface-a-brief-history-of-touchscreen-technology/. Accessed 4 Sep 2022

  8. Orphanides, A., Nam, C.: Touchscreen interfaces in context: A systematic review of research into touchscreens across settings, populations, and implementations. Appl. Ergon. 61, 116–143 (2017). https://doi.org/10.1016/j.apergo.2017.01.013

    Article  Google Scholar 

  9. Bhuyan, R., Kenny, S., Borah, S., Mishra, D., Das, K.: Recent advancements in continuous authentication techniques for mobile-touchscreen-based devices. In: Smart Innovation, Systems and Technologies, pp. 263–273 (2020). https://doi.org/10.1007/978-981-15-5971-6_29. Accessed 20 Mar 2022

  10. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013). https://doi.org/10.1109/tifs.2012.2225048

    Article  Google Scholar 

  11. Stylios, I., Kokolakis, S., Thanou, O., Chatzis, S.: Behavioral biometrics & continuous user authentication on mobile devices: a survey. Inf. Fusion 66, 76–99 (2021). https://doi.org/10.1016/j.inffus.2020.08.021

    Article  Google Scholar 

  12. Jain, A., Bolle, R., Pankanti, S.: Biometrics. Springer, New York (2006)

    Google Scholar 

  13. Mondal, S., Bours, P.: A study on continuous authentication using a combination of key-stroke and mouse biometrics. Neurocomputing 230, 1–22 (2017). https://doi.org/10.1016/j.neucom.2016.11.031

    Article  Google Scholar 

  14. Ponce, A.: A dynamic behavioral biometric approach to authenticate users employing their fingers to interact with touchscreen devices. Ph.D. Thesis, Graduate School of Computer and Information Sciences, Nova Southeastern University (2015). NSUWorks, https://nsuworks.nova.edu/gscis_etd/46

  15. Neal, T., Woodard, D.: Surveying biometric authentication for mobile device security. J. Pattern Recogn. Res. 11(1), 74–110 (2016). https://doi.org/10.13176/11.764

  16. Choi, S., Chang, I., Teoh, A.B.J. : One-class random maxout probabilistic network for mobile touchstroke authentication. In: Proceedings of the 24th International Conference on Pattern Recognition (ICPR), pp. 3359–3364 (2018). https://doi.org/10.1109/ICPR.2018.8545451

  17. SitovĂ¡, Z.: HMOG: new behavioral biometric features for continuous authentication of smartphone users. IEEE Trans. Inf. Forensics Secur. 11(5), 877–892 (2016). https://doi.org/10.1109/TIFS.2015.2506542

    Article  Google Scholar 

  18. Yang, Y., Guo, B., Wang, Z., Li, M., Yu, Z., Zhou, X.: BehaveSense: continuous authentication for security-sensitive mobile apps using behavioral biometrics. Ad Hoc Netw. 84, 9–18 (2019). https://doi.org/10.1016/j.adhoc.2018.09.015.Accessed20Mar2022

    Article  Google Scholar 

  19. Syed, Z., Helmick, J., Banerjee, S., Cukic, B.: Touch gesture-based authentication on mobile devices: the effects of user posture, device size, configuration, and inter-session variability. J. Syst. Softw. 149, 158–173 (2019). https://doi.org/10.1016/j.jss.2018.11.017

    Article  Google Scholar 

  20. Acien, A., Morales, A., Vera-Rodriguez, R., Fierrez, J.: Smartphone sensors for modeling human-computer interaction: general outlook and research datasets for user authentication. In: IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC) (2020). https://doi.org/10.1109/compsac48688.2020.00-81. Accessed 20 Mar 2022

  21. Barlas, Y., Basar, O.E., Akan, Y., Isbilen, M., Alptekin, G.I., Incel, O.D.: DAKOTA: continuous authentication with behavioral biometrics in a mobile banking application. In: Proceedings of the 5th International Conference on Computer Science and Engineering (UBMK), pp. 1–6 (2020). https://doi.org/10.1109/UBMK50275.2020.9219365

  22. Leingang, W., Gunn, D., Kim, J.H., Yuan, X., Roy, K.: Active authentication using touch dynamics. In: South East Con 2018, pp. 1–5 (2018). https://doi.org/10.1109/SECON.2018.8479298

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  24. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_50

    Chapter  Google Scholar 

  25. Debard, Q., Wolf, C., Canu, S., Arne, J.: Learning to recognize touch gestures: recurrent vs. convolutional features and dynamic sampling. In: Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 114–121 (2018). https://doi.org/10.1109/FG.2018.00026

  26. Lin, Z., Meng, W., Li, W., Wong, D.S.: Developing cloud-based intelligent touch behavioral authentication on mobile phones. In: Jiang, R., Li, C.-T., Crookes, D., Meng, W., Rosenberger, C. (eds.) Deep Biometrics. USL, pp. 141–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32583-1_7

    Chapter  Google Scholar 

  27. Belman, A.K., et al.: Insights from BB-MAS – a large dataset for typing, gait and swipes of the same person on desktop, tablet and phone. arXiv:1912.02736 (2019)

  28. Zheng, A., Casari, A.: Feature Engineering for Machine Learning, 1st edn., pp. 29–33. O’Reilly Media, Inc., Sebastopol (2018)

    Google Scholar 

  29. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  30. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156 (1996)

    Google Scholar 

  31. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, August 2016, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  32. Aziz, N., Akhir, E.A.P., Aziz, I.A., Jaafar, J., Hasan, M.H., Abas, A.N.C.: A study on gradient boosting algorithms for development of AI monitoring and prediction systems. In: International Conference on Computational Intelligence (ICCI), 8–9 October 2020, Universiti Teknologi PETRONAS (UTP) (2020)

    Google Scholar 

  33. Natekin, A., Knollm, A.: Gradient boosting machines, a tutorial. Front. Neurorobotics 7, 21 (2013). https://doi.org/10.3389/fnbot.2013.00021

    Article  Google Scholar 

  34. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1.Accessed20Mar2022

    Article  MATH  Google Scholar 

  35. Wehenkel, L., Ernst, D., Geurts, P.: Ensembles of extremely randomized trees and some generic applications. In: Proceedings of Robust Methods for Power System State Estimation and Load Forecasting (2006)

    Google Scholar 

  36. Sokolova, M., Lapalme, G. : A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009). https://doi.org/10.1016/j.ipm.2009.03.002. ISSN: 0306-4573

  37. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Ă–zsu, M.T. (eds.) Encyclopedia of Database Systems, Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_565

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupanka Bhuyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuyan, R., Kenny, S.P.K. (2023). Continuous Authentication of Tablet Users Using Raw Swipe Characteristics: Tree Based Approaches. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-35507-3_29

Download citation

Publish with us

Policies and ethics