Skip to main content

U-Net as a Tool for Adjusting the Velocity Distributions of Rheomagnetic Fluids

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

Hydrodynamics of viscous fluids deals with Navier-Stokes equation - a partial differential equation with unknown distributions for velocity and pressure in a flow domain. It is difficult to find its analytical solution, especially in cases of unsteady flows, flows of non-Newtonian or rheomagnetic fluids. It is usually solved numerically using finite difference, finite element, or control volume methods. The goal of this research is application of proposed physics-based loss to rheomagnetic fluids flows modeling. The basic network architecture is U-Net. The network receives an image of the flow domain and calculates the fluid velocity distribution in a form of an image of the stream function distribution. The network was tested for the asymptotic case, the results were compared with numerical solution and known analytical solution. Proposed tool allows modeling 2D flows of rheomagnetic fluids. The proposed method is general and allows modeling 3D flows.

This paper was supported by the Russian Science Foundation under the grant No 22-19-00789, https://rscf.ru/en/project/22-19-00789. The authors gratefully acknowledge this support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comsol multiphysics. software - understand, predict, and optimize. https://www.comsol.com/comsol-multiphysics

  2. Ahmadian, M., Poynor, J.: An evaluation of magneto rheological dampers for controlling gun recoil dynamics. Shock Vibr. 8, 674830 (2001). https://doi.org/10.1155/2001/674830

  3. Buda, M., Saha, A., Mazurowski, M.A.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med. 109, 218–225 (2019). https://doi.org/10.1016/j.compbiomed.2019.05.002

  4. Burgers, J.M.: Magnetohydrodynamics, by T. G. COWLING, New york : Interscience publishers, inc., 1957. 115 pp. \(dolar\)3.50. J. Fluid Mech. 3(5), 550-552 (1958). https://doi.org/10.1017/S0022112058220181

  5. Das, P.K., Diya, V.A., Meher, S., Panda, R., Abraham, A.: A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic leukemia. IEEE Access 10, 81741–81763 (2022). https://doi.org/10.1109/ACCESS.2022.3196037. https://ieeexplore.ieee.org/document/9848788/

  6. Dickinson, E.J., Ekström, H., Fontes, E.: Comsol multiphysics®: finite element software for electrochemical analysis, a mini-review. Electrochemis. Commun. 40, 71–74 (2014). https://doi.org/10.1016/J.ELECOM.2013.12.020

  7. Dissanayake, M.W., Phan-Thien, N.: Neural-network-based approximations for solving partial differential equations. Commun. Numerical Methods Eng. 10, 195–201 (1994). https://doi.org/10.1002/CNM.1640100303. https://onlinelibrary.wiley.com/doi/full/10.1002/cnm.1640100303

  8. Gelfand, I.M., Fomin, S.V.: Calculus of variations. Courier Corporation (2000). https://books.google.com/books/about/Calculus_of_Variations.html?hl=ru&id=YkFLGQeGRw4C

  9. Ghaffari, A., Hashemabadi, H., Ashtiani, M.: A review on the simulation and modeling of magnetorheological fluids. J. Intell. Mater. Syst. Struct. 26, 881–904 (2014). https://doi.org/10.1177/1045389X14546650

  10. Hazarika, R.A., Abraham, A., Kandar, D., Maji, A.K.: An improved LeNet-deep neural network model for Alzheimer’s disease classification using brain magnetic resonance images. IEEE Access 9, 161194–161207 (2021). https://doi.org/10.1109/ACCESS.2021.3131741

    Article  Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

  12. Kornaeva, E., Kornaev, A., Fetisov, A., Stebakov, I., Ibragimov, B.: Physics-based loss and machine learning approach in application to non-newtonian fluids flow modeling. 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022). https://doi.org/10.1109/CEC55065.2022.9870411. https://ieeexplore.ieee.org/document/9870411/

  13. Li, Z., Yang, W., Peng, S., Liu, F.: A survey of convolutional neural networks: analysis, applications, and prospects. CoRR abs/2004.02806 (2020). https://arxiv.org/abs/2004.02806

  14. Omidbeygi, F., Hashemabadi, S.: Exact solution and CFD simulation of magnetorheological fluid purely tangential flow within an eccentric annulus. Int. J. Mech. Sci. 75(Complete), 26–33 (2013). https://doi.org/10.1016/j.ijmecsci.2013.04.009

  15. Patankar, S.: Numerical heat transfer and fluid flow. Electro Skills Series, Hemisphere Publishing Corporation (1980). https://books.google.ru/books?id=N2MVAQAAIAAJ

  16. Rabinow, J.: The magnetic fluid clutch. Trans. Am. Inst. Electr. Eng. 67(2), 1308–1315 (1948). https://doi.org/10.1109/T-AIEE.1948.5059821

    Article  Google Scholar 

  17. Raymond, S.J., Camarillo, D.B.: Applying physics-based loss functions to neural networks for improved generalizability in mechanics problems (2021). https://doi.org/10.48550/ARXIV.2105.00075. https://arxiv.org/abs/2105.00075

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  19. Samaniego, E., et al.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl. Mech. Engineering 362, 112790 (2019). https://doi.org/10.1016/j.cma.2019.112790. http://arxiv.org/abs/1908.10407

  20. Swain, M., Tripathy, T.T., Panda, R., Agrawal, S., Abraham, A.: Differential exponential entropy-based multilevel threshold selection methodology for colour satellite images using equilibrium-cuckoo search optimizer. Eng. Appl. Artif. Intell. 109, 104599 (2022). https://doi.org/10.1016/J.ENGAPPAI.2021.104599

  21. Thuerey, N., Holl, P., Mueller, M., Schnell, P., Trost, F., Um, K.: Physics-based deep learning. In: WWW (2021). http://physicsbaseddeeplearning.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Fetisov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kornaeva, E., Kornaev, A., Fetisov, A., Stebakov, I., Savin, L. (2023). U-Net as a Tool for Adjusting the Velocity Distributions of Rheomagnetic Fluids. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-031-35510-3_2

Download citation

Publish with us

Policies and ethics