Skip to main content

Underwater Acoustic Sensor Networks: Concepts, Applications and Research Challenges

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 717))

  • 344 Accesses

Abstract

During the last years, Underwater Acoustic Sensors Networks (UASNs) has emerged as an interesting area of research. The harsh characteristics that the underwater environment possesses cause many challenges for the lifetime of UASNs and the major challenge that UASNs face is Energy efficiency which occurs for the reason of limited battery power that the sensor nodes own. Hence, in order to cope with the underwater characteristics like limited bandwidth and high attenuation and to optimize the limited energy consumption, the designing of UASNs protocols need to done with utmost care. Lots of research have been done in this fields but still several issues and challenges have been met by this networks like: hotspot problem, real implementation of routing protocols, propagation delay, power consumption, energy efficient path etc. The main focus of this work is to present the existing issues and challenges that provides the future directions to do the research in the field of underwater acoustic sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gola, K., Gupta, B.: Underwater sensor networks: ‘comparative analysis on applications, deployment and routing techniques.’ IET Commun. 14(17), 2859–2870 (2020). https://doi.org/10.1049/iet-com.2019.1171

    Article  Google Scholar 

  2. Gupta, B., Gola, K.K., Dhingra, M.: HEPSO: an efficient sensor node redeployment strategy based on hybrid optimization algorithm in UWASN. Wireless Netw. 27(4), 2365–2381 (2021). https://doi.org/10.1007/s11276-021-02584-4

    Article  Google Scholar 

  3. Wang, H., Wang, S., Bu, R., Zhang, E.: A novel cross-layer routing protocol based on network coding for underwater sensor networks. Sensors 17(8), 1821 (2017). https://doi.org/10.3390/s17081821

    Article  Google Scholar 

  4. Jin, Z., Ma, Y., Su, Y., Li, S., Fu, X.: A Q-learning-based delay-aware routing algorithm to extend the lifetime of underwater sensor networks. Sensors 17(7), 1660 (2017). https://doi.org/10.3390/s17071660

    Article  Google Scholar 

  5. Kim, S.: A better-performing Q-learning game-theoretic distributed routing for underwater wireless sensor networks. Int. J. Distrib. Sens. Netw. 14(1), 1550147718754728 (2018). https://doi.org/10.1177/1550147718754728

    Article  Google Scholar 

  6. Shah, M., Wadud, Z., Sher, A., Ashraf, M., Khan, Z.A., Javaid, N.: Position adjustment–based location error–resilient geo-opportunistic routing for void hole avoidance in underwater sensor networks. Concurr. Comput. Pract. Exp. 30(21), e4772 (2018). https://doi.org/10.1002/cpe.4772

    Article  Google Scholar 

  7. Wang, Z., Han, G., Qin, H., Zhang, S., Sui, Y.: An energy-aware and void-avoidable routing protocol for underwater sensor networks. IEEE Access 6, 7792–7801 (2018). https://doi.org/10.1109/access.2018.2805804

    Article  Google Scholar 

  8. Khan, A., Aurangzeb, K., Qazi, E.U.H., Ur Rahman, A.: Energy-aware scalable reliable and void-hole mitigation routing for sparsely deployed underwater acoustic networks. Appl. Sci. 10(1), 177 (2019). https://doi.org/10.3390/app10010177

    Article  Google Scholar 

  9. Lu, Y., He, R., Chen, X., Lin, B., Yu, C.: Energy-efficient depth-based opportunistic routing with q-learning for underwater wireless sensor networks. Sensors 20(4), 1025 (2020). https://doi.org/10.3390/s20041025

    Article  Google Scholar 

  10. Khan, I., et al.: Adaptive hop-by-hop cone vector-based forwarding protocol for underwater wireless sensor networks. Int. J. Distrib. Sens. Netw. 16(9), 155014772095830 (2020). https://doi.org/10.1177/1550147720958305

    Article  Google Scholar 

  11. Rathore, R.S., et al.: W-GUN: whale optimization for energy and delay-centric green underwater networks. Sensors 20(5), 1377 (2020). https://doi.org/10.3390/s20051377

    Article  MathSciNet  Google Scholar 

  12. Gola, K.K., Gupta, B.: Underwater Acoustic Sensor Networks: An Energy Efficient and Void Avoidance Routing Based on Grey Wolf Optimization Algorithm. Arab. J. Sci. Eng. 46(4), 3939–3954 (2021). https://doi.org/10.1007/s13369-020-05323-7

    Article  Google Scholar 

  13. Chaaf, A., et al.: Energy-efficient relay-based void hole prevention and repair in clustered multi-AUV underwater wireless sensor network. Secur. Commun. Netw. 2021, 1–20 (2021). https://doi.org/10.1155/2021/9969605

    Article  Google Scholar 

  14. Mhemed, R., Comeau, F., Phillips, W., Aslam, N.: Void avoidance opportunistic routing protocol for underwater wireless sensor networks. Sensors 21(6), 1942 (2021). https://doi.org/10.3390/s21061942

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kumar Gola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gola, K.K., Singh, B.M., Mridula, Kanauzia, R., Arya, S. (2023). Underwater Acoustic Sensor Networks: Concepts, Applications and Research Challenges. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-031-35510-3_35

Download citation

Publish with us

Policies and ethics