Abstract
Despite the challenges around incorporating Artificial Intelligence into business processes, AI is revolutionizing the way companies are doing business. The biggest business and social challenge in the adoption of AI solutions is achieving the end users’ trust in the models and scaling prototypes to production ready models in an enterprise environment. Scaling trustworthy AI in a more transparent, responsible, and governed manner could facilitate widespread adoption of AI solutions in an enterprise environment. After conducting an extensive literature review on different aspects of AI quality, we have developed an integrated AI Quality-MLOps framework which enables the development and deployment of AI solutions in an enterprise environment. AI Quality is the center of the proposed framework, and it guides businesses towards putting a complete set of quality metrics, tests, approaches, and algorithms together to ensure conformance with business objectives. This approach improves the delivery efficiency of the solution both during the design and production phase while conforming to the regulatory guidelines adopted by an organization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schmitz, A., Akila, M., Hecker, D., Poretschkin, M., Wrobel, S.: The why and how of trustworthy AI. at-Automatisierungstechnik 70(9), 793–804 (2022)
DIN (German Institute for Standardization) Homepage. https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf. Accessed 16 Oct 2022
American Council for Technology-Industry Advisory Council’s Homepage (ACT-IAC). https://www.actiac.org/system/files/Ethical%20Application%20of%20AI%20Framework_0.pdf. Accessed 16 Oct 2022
Bellamy, R.K., et al.: AI Fairness 360: an extensible toolkit for detecting and mitigating algorithmic bias. IBM J. Res. Dev. 63(4/5), 4:1–4:15 (2019)
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems. vol. 30 (2017)
Pearl, J.: The seven tools of causal inference, with reflections on machine learning. Commun. ACM 62(3), 54–60 (2019)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
FDA Homepage. https://www.fda.gov/media/122535/download. Accessed 16 Oct 2022
Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: Ortner, R., Simon, H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI), vol. 9925, pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46379-7_5
Boult, T.E., Cruz, S., Dhamija, A.R., Gunther, M., Henrydoss, J. Scheirer, W.J.: Learning and the unknown: surveying steps toward open world recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, No. 01, pp. 9801–9807 (2019)
Peters, J., Buhlmann, P., Meinshausen, N.: Causal inference using invariant prediction: identification and confidence intervals. arXiv. Methodology (2015)
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893. (2019)
Settles, B.: Active Learning Literature Survey. (2009)
Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International conference on machine learning, pp. 2152–2161 (2015)
Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. pattern Anal. Mach. Intell. 28(4), pp. 594–611 (2006)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. (2016)
Frazão, I., Abreu, P.H., Cruz, T., Araújo, H., Simões, P.: Denial of service attacks: Detecting the frailties of machine learning algorithms in the classification process. In: Luiijf, E., Žutautaitė, I., Hämmerli, B.M. (eds.) CRITIS 2018. LNCS, vol. 11260, pp. 230–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05849-4_19
Newaz, A.I., Haque, N.I., Sikder, A.K., Rahman, M.A., Uluagac, A.S.: Adversarial attacks to machine learning-based smart healthcare systems. In: IEEE Global Communications Conference, pp. 1–6 IEEE (2020)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)
Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction APIs. In: 25th USENIX Security Symposium, pp. 601–618 (2016)
Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: IEEE Symposium on Security and Privacy, pp. 3–18 IEEE (2017)
Wang, C., Chen, J., Yang, Y., Ma, X., Liu, J.: Poisoning attacks and countermeasures in intelligent networks: status quo and prospects. Digital Commun. Netw. 8(2) (2021)
Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069 (2018)
Tabassi, E., Burns, K.J., Hadjimichael, M., Molina-Markham, A.D., Sexton, J.T.: A taxonomy and terminology of adversarial machine learning. NIST IR, 1–29. (2019)
Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. Society for Industrial and Applied Mathematics (2007)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams. Vol. 6, pp. 77–86 (2006)
Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), pp.100–115 (1954)
Cotter, A., et al.: Training fairness-constrained classifiers to generalize. In: ICML Workshop: Fairness, Accountability, and Transparency in Machine Learning (2018)
Federal Housing finance Agency’s HomePage. https://www.fhfa.gov/SupervisionRegulation/AdvisoryBulletins/Pages/Artificial-Intelligence-Machine-Learning-Risk-Management.aspx. Accessed 08 Nov 2022
Acknowledgements
As used in this document, “Deloitte” means Deloitte Consulting LLP, a subsidiary of Deloitte LLP. Please see www.deloitte.com/us/about for a detailed description of our legal structure. Certain services may not be available to attest clients under the rules and regulations of public accounting. This publication contains general information only and Deloitte is not, by means of this publication, rendering accounting, business, financial, investment, legal, tax, or other professional advice or services. This publication is not a substitute for such professional advice or services, nor should it be used as a basis for any decision or action that may affect your business. Before making any decision or taking any action that may affect your business, you should consult a qualified professional advisor. Deloitte shall not be responsible for any loss sustained by any person who relies on this publication.
Copyright © 2022 Deloitte Development LLC. All rights reserved.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Akkineni, A., Koohborfardhaghighi, S., Singh, S. (2023). Centrality of AI Quality in MLOPs Lifecycle and Its Impact on the Adoption of AI/ML Solutions. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-031-35510-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-35510-3_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35509-7
Online ISBN: 978-3-031-35510-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)