Skip to main content

A Review of Human-Computer Interface Evaluation Research Based on Evaluation Process Elements

  • Conference paper
  • First Online:
Human-Computer Interaction (HCII 2023)

Abstract

As an important medium for human-computer information exchange, the human-computer interface (HCI) plays an important role in the human-computer-environment system that cannot be ignored. A friendly design of HCI not only enables operators to complete operation tasks efficiently, but also has the characteristics of simplicity, beauty, easy operation and low load. Therefore, how to evaluate the friendliness of HCI design and how to judge whether the evaluation process is scientific and reasonable has become an important issue in current HCI-related research. Starting from the elements of HCI evaluation process, this paper firstly summarizes and analyzes the representative evaluation purposes in HCI evaluation research, specifically including interface usability, visual performance, interface aesthetics, suitability for special people, mental load, and evaluation exploratory research, and points out the guiding role of evaluation purposes in HCI evaluation activities; Secondly, this paper categorizes and summarizes the construction of HCI evaluation index system, determination of evaluation index weights, and selection of evaluation methods involved in HCI evaluation research from the perspective of research methods, and analyzes the advantages and disadvantages of each method in conjunction with specific HCI evaluation research; Finally, by analyzing and summarizing the research literature, this paper finds that the following problems exist in HCI evaluation research: the evaluation indexes are too abstract, the objectivity and rationality of the evaluation process need to be improved, and the feedback guidance of evaluation results on HCI design needs to be improved. This paper also points out that the future research trends of HCI evaluation research are as follows: the research target will be more inclined to the HCI of mobile touch devices, the selection of evaluation indexes needs to be more specific, the evaluation process requires researchers to pay more attention to objectivity and rationality, and the evaluation results can be better used to optimize the HCI design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, C., Zhang, K.: Diagnostic user interface usability evaluation (IM) (Part 1) – introduction and evaluation. Chin. Ergon. 03, 54–57 (2000)

    Google Scholar 

  2. Wu, C., Zhang, K.: Diagnostic user interface usability evaluation (IM) (Part 2) – comparison and suggestion. Chin. Ergon. 04, 35–38 (2000)

    Google Scholar 

  3. Wu, C., Zhang, K.: Human-computer interface usability evaluation method. Psychol. Sci. 06, 727–728 (2001)

    Google Scholar 

  4. Liang, H.: Based on AHM and fuzzy comprehensive evaluation of interval number in the evaluation of mobile phone interface. Packag. Eng. 33(16), 67–71 (2012)

    Google Scholar 

  5. Liu, S., Li, Y.: Study of evaluation on display interface ergonomic evaluation for intelligent electric cooker. J. Jilin Univ. (Inf. Sci. Ed.) 34(02), 266–270 (2016)

    Google Scholar 

  6. Liu, C., Guo, F., Liu, W.: The evaluation scale of the perceived usability of the elderly shopping website interface was constructed. J. Inf. Syst. 01, 49–71 (2017)

    Google Scholar 

  7. Xu, F., Zhang, L.: Research on human-factor fitness evaluation system of smart phone APP interactive interface. Chin. J. Ergon. 24(03), 77–81 (2018)

    Google Scholar 

  8. Zhu, R., Yao, J., Tang, X.: Evaluation and reaserch of app interface for user experience optimization of doctors and patients. Dev. Innov. Mach. Electr. Prod. 32(02), 45–47+92 (2019)

    Google Scholar 

  9. Liu, W., Li, L., Fu, G.: Research on usability evaluation index system of combat command software interface based on the IPO model. J. China Acad. Electron. Inf. Technol. 16(10), 1060–1066 (2021)

    Google Scholar 

  10. Wu, J., Sun, J., Li, M.: Usability evaluation of WeChat program interface design based on entropy. Packag. Eng. 42(12), 191–196+222 (2021)

    Google Scholar 

  11. Cigdem, A., Aycan, P., Mustafa, E., et al.: Usability evaluation of TV interfaces: subjective evaluation vs. objective evaluation. Int. J. Hum.-Comput. Interact. 38(7), 661–679 (2021)

    Google Scholar 

  12. Zhou, M., Wang, Z., Zheng, Y.: Study on usability evaluation of medical software interface based on eye movement tracking technology. In: International Conference on Machine Vision (2020)

    Google Scholar 

  13. Wang, S., Li, B., Zhu, Y.: Comprehensive evaluation of usability at the mobile end interface. IOP Conf. Ser. Mater. Sci. Eng. 573(1), 012–037 (2019)

    Article  Google Scholar 

  14. Manoela, R., Rafael R.: User interface evaluation methods for elderly: a systematic review. In: 21st Symposium on Virtual and Augmented Reality (SVR), Rio de Janeiro, Brazil, pp. 84–91. IEEE (2019)

    Google Scholar 

  15. Nugraha, A., Rolando, Puspasari, M., et al.: Usability evaluation for user interface redesign of financial technology application. IOP Conf. Ser. Mater. Sci. Eng. 505(1), 012–101 (2019)

    Google Scholar 

  16. Lestari, R., Muslim, E., Moch, B.: User interface evaluation of official store for FMCG (fast moving consumer goods) products in e-commerce website using user experience approach. IOP Conf. Ser. Mater. Sci. Eng. 505(1), 012–079 (2019)

    Article  Google Scholar 

  17. Li, H., Tian, S., Li, F., et al.: Usability evaluation of mining machinery interface based on eye movement experiment. In: Rebelo, F., Soares, M. (eds.) Advances in Ergonomics in Design. AHFE 2017: Advances in Intelligent Systems and Computing, vol. 588, pp. 591–599. Springer, Cham (2017)

    Chapter  Google Scholar 

  18. Alonso, R., Mosqueira, R., Moret, B.: A systematic and generalizable approach to the heuristic evaluation of user interfaces. Int. J. Hum.-Comput. Interact. 34(12), 1169–1182 (2018)

    Article  Google Scholar 

  19. Rim, R., Mohamed, A., Adel, M., et al.: Evaluation method for an adaptive web interface: GOMS model. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016: Intelligent Systems Design and Applications, Advances in Intelligent Systems and Computing, vol. 557, pp. 116–124. Springer, Cham (2017)

    Google Scholar 

  20. Cui, M., Zhu, L.: Usability evaluation methods of user interface based on mobile games using fuzzy methods. In: Chen, Y., Christie, M., Tan, W. (eds.) Smart Graphics, pp. 124–131. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  21. Bessghaier, N., Souii, M.: Towards usability evaluation of hybrid mobile user interfaces. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, pp. 895–900. IEEE (2017)

    Google Scholar 

  22. Mator, J.D., et al.: Usability: adoption, measurement, value. Hum. Factors 63(6), 956–973 (2021)

    Article  Google Scholar 

  23. Allah, K.K., Ismail, N.A., Hasan, L., Leng, W.Y.: Usability evaluation of web search user interfaces from the elderly perspective. Int. J. Adv. Comput. Sci. Appl. 12(12), 647–657 (2021)

    Google Scholar 

  24. Wu, Y., Cheng, J., Kang, X.: Study of smart watch interface usability evaluation based on eye-tracking. In: Marcus, A. (ed.) DUXU 2016. LNCS, vol. 9748, pp. 98–109. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40406-6_10

    Chapter  Google Scholar 

  25. Normark, C.J.: Design and evaluation of a touch-based personalizable in-vehicle user interface. Int. J. Hum.-Comput. Interact. 31(11), 731–745 (2015)

    Article  Google Scholar 

  26. Xiao, G., Li, X., Xiao, M.: An ease-of-use evaluation of the human-machine interface. J. Southwest China Normal Univ. (Nat. Sci. Ed.) 34(03), 98–102 (2009)

    Google Scholar 

  27. Wang, H., Xie, W., Zhao, Y.: Research on evaluation method about handing performance of man-machine interface of weapons. Command Control Simul. 35(02), 68–70+84 (2013)

    Google Scholar 

  28. Nielsen, J.: Usability Engineering. Morgan Kaufmann (1994)

    Google Scholar 

  29. Liu, W., Yuan, X., Liu, Z., et al.: Comprehensive evaluation indexes and evaluation method for man-machine compatibility of display/control interface. China Saf. Sci. J. 04, 36–39 (2004)

    Google Scholar 

  30. Wang, J., Cai, W.: Ergonomics evaluation of human-machine interface based on spatial vision characteristics. Tactical Missile Technol. 06, 107–111 (2012)

    Google Scholar 

  31. Gao, S., Zhu, L., Li, Y.: Color matching evaluation of APP user interface for elderly based on grey clustering method. Packag. Eng. 42(06), 198–205 (2021)

    Google Scholar 

  32. Ma, Y., Zhai, L., Wang, X., Liang, H.: Evaluation of the matching optimization of human-machine interface in the cab. In: 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, pp. 152–156. IEEE (2020)

    Google Scholar 

  33. Riegler, A., Holzmann, C.: Measuring visual user interface complexity of mobile applications with metrics. Interact. Comput. 30(3), 207–223 (2018)

    Article  Google Scholar 

  34. Ngo, D.C.L., Teo, L.S., Byrne, J.G.: Modelling interface aesthetics. Inf. Sci. 152, 25–46 (2003)

    Article  Google Scholar 

  35. Zhou, L., Xue, C., Tang, W., et al.: Aesthetic evaluation method of interface elements layout design. J. Comput.-Aided Des. Comput. Graph. 25(005), 758–766 (2013)

    Google Scholar 

  36. Zhang, N., Wang, J., Yang, Y.: Evaluation method of aesthetic image for man-machine interface form elements layout design. Mech. Sci. Technol. Aerosp. Eng. 34(10), 1594–1598 (2015)

    Google Scholar 

  37. Dai, Y., Xue, C., Wang, H.: Research on interface beauty evaluation method based on AHP. Design 08, 123–125 (2018)

    Google Scholar 

  38. Ren, X., Xue, C.: Evaluation of interface element layout of camera connect APP based on Meidu calculation. Design 04, 142–143 (2018)

    Google Scholar 

  39. Li, H.: Overview of human-machine interface Meidu research. Ind. Des. 01, 93–94 (2019)

    Google Scholar 

  40. Lv, J., Sun, W., Pan, W., et al.: Evaluation of information interface layout beauty based on cognitive characteristics. Packag. Eng. 40(18), 220–226 (2019)

    Google Scholar 

  41. Zhou, A., Zhou, C., Ooyang, J., et al.: Model of synthetic evaluation on interface stylistic beauty based on moderately standardized of index. J. Zhejiang Univ. (Eng. Sci.) 54(12), 2273–2285 (2020)

    Google Scholar 

  42. Pastushenko, O., Hynek, J., Hruška, T.: Evaluation of user interface design metrics by generating realistic‐looking dashboard samples. Expert Syst. 38(5) (2021)

    Google Scholar 

  43. Deng, L., Wang, G.: Quantitative evaluation of visual aesthetics of human-machine interaction interface layout. Comput. Intell. Neurosci. 2020, 1–14 (2020)

    Article  Google Scholar 

  44. Kong, Q., Guo, Q.: Comprehensive evaluation method of interface elements layout aesthetics based on improved AHP. In: Rebelo, F., Soares, M.M. (eds.) Advances in Ergonomics in Design, pp. 509–520. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94706-8_54

    Chapter  Google Scholar 

  45. Yang, Y., Zhang, B., Li, X., et al.: Evaluation of navigation interface design of ASD children intervention APP based on AHP-entropy weight method. Packag. Eng. 43(12), 165–173 (2022)

    Google Scholar 

  46. Susilo, F.F., Park, J.-H., Park, J.-M.: Evaluation of touch-based interface design for the elderly based on cultural differences. In: Stephanidis, C. (ed.) HCI 2018. CCIS, vol. 851, pp. 211–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92279-9_29

    Chapter  Google Scholar 

  47. Krel, M., Kožuh, I., Debevc, M.: Heuristic evaluation of a mobile telecare system for older adults. In: Miesenberger, K., Kouroupetroglou, G. (eds.) Computers Helping People with Special Needs, pp. 391–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94274-2_56

    Chapter  Google Scholar 

  48. Trilar, J., Sobo, T., Duh, E.S.: Family-centered design: interactive performance testing and user interface evaluation of the slovenian edavki public tax portal. Sensors 21(15) (2021)

    Google Scholar 

  49. Rakhra, A.K., Mann, D.D.: Design and evaluation of individual elements of the interface for an agricultural machine. J. Agric. Saf. Health 24(1), 27–42 (2018)

    Article  Google Scholar 

  50. Chen, Y., Yan, S., Tran, C.C.: Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload. Nucl. Eng. Technol. 51(2), 453–462 (2019)

    Article  Google Scholar 

  51. Li, M., Albayrak, A., Zhang, Yu., van Eijk, D.: Multiple factors mental load evaluation on smartphone user interface. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 827, pp. 302–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96059-3_33

    Chapter  Google Scholar 

  52. Li, F., Wang, B.: Evaluation methods of the relevance between PC and mobile terminal layout. Packag. Eng. 38(20), 143–149 (2017)

    Google Scholar 

  53. Li, J., Yu, S., Liu, W.: Cognitive characteristic evaluation of CNC interface layout based on eye-tracking. J. Comput.-Aided Des. Comput. Graph. 29(07), 1334–1342 (2017)

    Google Scholar 

  54. Zhou, Q., Cheng, Y., Liu, Z., Chen, Y., Li, C.: The layout evaluation of man-machine interface based on eye movement data. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 824, pp. 64–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96071-5_7

    Chapter  Google Scholar 

  55. Sun, L., Han, B., Zhang, W.: Evaluation of mobile APP interface design for english learning based on eye movement experiment. Chin. J. Ergon. 27(02), 1–8 (2021)

    Google Scholar 

  56. Wang, J., Ma, J., Lv, S.: Evaluation of WinCC interface based on eye tracking technology. Exp. Technol. Manag. 36(06), 53–57 (2019)

    Google Scholar 

  57. Du, D., Pang, Q., Wu, Y.: Modern Comprehensive Evaluation Methods and Selected Cases, 3rd edn. Tsinghua University Press, Beijing (2021)

    Google Scholar 

  58. Lin, H., Zhang, Y.: Quality evaluation of mobile game main interface design based on information entropy. Design 07, 57–59 (2017)

    Google Scholar 

  59. Wang, M., Yu, S., Yang, Y.: Human-machine interface evaluation of aircraft cockpit based on Fuzzy AHP-GEM. J. Mach. Des. 34(02), 105–109 (2017)

    Google Scholar 

  60. Baker, N.A., Redfern, M.S.: Developing an observational instrument to evaluate personal computer keyboarding style. Appl. Ergon. 36(3), 345–354 (2005)

    Article  Google Scholar 

  61. Song, H., Guo, M.: Study on methods and application of human-computer interface ergonomics evaluation for fighter cockpit. Aeronaut. Sci. Technol. 28(05), 28–32 (2017)

    Google Scholar 

  62. Zhang, X., Yin, Y., Feng, Y., et al.: Study on ergonomics evaluation index system for display and control interface of automobile. Energy Conserv. Environ. Prot. Transp. 12(04), 12–16 (2016)

    Google Scholar 

  63. Song, H., Xu, X.: Interface ergonomics evaluation methods and applied research for fighter cockpit. In: Long, S., Dhillon, B.S. (eds.) MMESE 2018. LNEE, vol. 527, pp. 333–340. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2481-9_38

    Chapter  Google Scholar 

  64. Yuan, S., Gao, H., Wang, W., et al.: Multi-image evaluation for human-machine interface based on Kansei engineering. Chin. J. Eng. Des. 24(05), 523–529 (2017)

    Google Scholar 

  65. Zhu, S., Qu, Y., Wang, W., et al.: Evaluation model of human-machine interface of the CNC based on improved FAHP-TOPSIS. Mach. Des. Res. 35(06), 144–148+156 (2019)

    Google Scholar 

  66. Zhao, H., He, L., Lin, L., et al.: Digital human-machine interface experience measurement based on TOPSIS. J. Mach. Des. 33(01), 120–123 (2016)

    Google Scholar 

  67. Sun, J., Jiang, T., Wang, C., et al.: Research on ergonomic evaluation indicator and methodology for interactive interface of spacecraft software. Manned Spaceflight 26(02), 208–213 (2020)

    Google Scholar 

  68. Zhao, J., Hao, J., Wang, S., et al.: Research on the human-machine interface evaluation of the tank. Microcomput. Inf. 25(19), 243–244+224 (2009)

    Google Scholar 

  69. Rao, D., Chen, Y., Lv, W., et al.: Comprehensive evaluation of human-machine interface layout in ttrain driving cab based on the multi-level fuzzy theory. Packag. Eng. 42(04), 61–69 (2021)

    Google Scholar 

  70. Song, H.: Application of the hierarchy analysis-grey ccorrelation in assessment of software interface. J. Donghua Univ. (Nat. Sci.) 03, 318–321 (2008)

    Google Scholar 

  71. Li, B., Ji, X., Ye, C.: Evaluation of DSV man-machine interface based on fuzzy AHP & grey correlation. Manuf. Autom. 36(23), 71–75 (2014)

    Google Scholar 

  72. Yan, S., Zhang, Z., Chen, N., et al.: Evaluation of human-machine interface based on human factor indicator. Chin. Ergon. 04, 26–30 (2004)

    Google Scholar 

  73. Yan, S., Li, Q., Zhang, Z., et al.: Research on subjective evaluation method in human-machine-interface based on grey theory. J. Harbin Eng. Univ. 01, 98–100+104 (2005)

    Google Scholar 

  74. Yan, S., Yu, X., Zhang, Z., et al.: Evaluation method of human-machine interface of virtual meter based on RBF network. J. Syst. Simul. 24, 5731–5735 (2007)

    Google Scholar 

  75. Qiu, Y., Zhu, Z., Mao, E., et al.: Virtual ergonomics design and evaluation of agricultural equipment cab. Trans. Chin. Soc. Agric. Eng. 27(03), 117–121 (2011)

    Google Scholar 

  76. Zhang, X., Li, K., Guo, J.: An evaluation method for software user interface. J. Shaanxi Normal Univ. (Nat. Sci. Ed.) S1, 185–187 (2005)

    Google Scholar 

  77. Xiong, S., Yao, Z.: An evaluation model for sonar ssoftware user interface. Ship Electron. Eng. 36(03), 98–101 (2016)

    Google Scholar 

  78. Index weight. https://baike.baidu.com/item/%E6%8C%87%E6%A0%87%E6%9D%83%E9%87%8D?forcehttps=1%3Ffr%3Dkg_hanyu. Accessed 11 Apr 2022

  79. Zhang, X., Guo, J., Zhang, F.: Software user interface evaluation based on grey incidence analysis. Comput. Eng. Des. 14, 2661–2662 (2006)

    Google Scholar 

  80. Wang, B., Li, Y.: Five-level scale assignment-fuzzy comprehensive evaluation of huma-machine interface quality. Comput. Appl. Softw. 30(02), 22–25 (2013)

    Google Scholar 

  81. Luo, A., Tan, D., Zeng, Y.: Fuzzy multi-level synthetic evaluation for human computer interface. Fuzzy Syst. Math. 04, 80–86 (1999)

    Google Scholar 

  82. Yan, S., Li, Q., He, P., et al.: A comprehensive evaluation of software user interface. J. Harbin Eng. Univ. 05, 653–657 (2004)

    Google Scholar 

  83. Ding, W., Yang, G., Fang, M.: Human-computer interface synthetical evaluation based on AHP. J. Nanyang Normal Univ. 12, 72–73+85 (2007)

    Google Scholar 

  84. Zhao, C., Li, J., Ren, J., et al.: Research on evaluation method of human-machine interface of fitness equipment based on multi-factor fusion. J. Graph. 40(05), 932–935 (2019)

    Google Scholar 

  85. Zhang, R., Wang, M., Guo, Y., et al.: Design and evaluation of man-machine interface of oil field water injection system platform. J. Mach. Des. 38(07), 118–125 (2021)

    Google Scholar 

  86. Li, H., Wang, S., Li, J.: Research on human-machine interface evaluation method based on QFD-PUGH. J. Graph. 42(06), 1043–1050 (2021)

    Google Scholar 

  87. Xiao, X., Wanyan, X., Zhuang, D.: Comprehensive evaluation model of multidimensional visual coding on display interface. J. Beijing Univ. Aeronaut. Astronaut. 41(06), 1012–1018 (2015)

    Google Scholar 

  88. Zhang, R.: Evaluation of the user interface of university digital library based on the analysis of grey ideal relation. Value Eng. 33(33), 231–232 (2014)

    Google Scholar 

  89. Bao, W., Hu, Y., Zhu, L.: Fuzzy comprehensive evaluation of interface design of elderly intelligent products based on grey correlation. Hunan Packag. 33(04), 51–54 (2018)

    Google Scholar 

  90. Wang, Y., Wang, X.: Evaluation of organizational interface management of large-scale engineering projects based on entropy method and grey theory. Archit. Technol. 49(02), 213–216 (2018)

    Google Scholar 

  91. Liu, X., et al.: Human reliability evaluation based on objective and subjective comprehensive method used for ergonomic interface design. Math. Probl. Eng. 2021, 1–16 (2021)

    Google Scholar 

  92. He, S., Zhi, J.: Evaluation of train passenger interface design based on analytic hierarchy process with independent weight method. J. Southwest Jiaotong Univ. 56(04), 897–904 (2021)

    Google Scholar 

  93. Xia, C., Jiang, K.: Weight assignment of evaluation indexes for human-machine interface based on reliability coefficient. J. Shenyang Univ. Technol. 35(01), 53–57 (2013)

    Google Scholar 

  94. Wang, F., Zhou, X.: Research on APP evaluation based on visually impaired user experience. Sci. Technol. Innov. 02, 103–104 (2021)

    Google Scholar 

  95. Wang, Y., Wang, X., Wu, T., et al.: Interface design evaluation of mobile phone music APP based on eye-tracking experiment. Sci. Technol. Eng. 18(09), 266–271 (2018)

    Google Scholar 

  96. Yan, H., Wang, J., Wang, W.: Eye movement experiment analysis and evaluation of shopping app interface design. Ind. Des. Res. 00, 206–211 (2018)

    Google Scholar 

  97. Li, X., Shou, Z., Zhang, T., et al.: Applicability evaluation model of customizable user interface based on rough set-FAHP. J. Guilin Univ. Electron. Technol. 38, 279–284 (2018)

    Google Scholar 

  98. He, S., Zhi, J., Du, Y., et al.: A review of research on man-machine design evaluation of equipment driving interface. Mach. Des. Res. 35(05), 97–103 (2019)

    Google Scholar 

  99. Eliseo, M.A., Casac, B.S., Gentil, G.R.: A comparative study of video content user interfaces based on heuristic evaluation. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, pp. 1–6. IEEE (2017)

    Google Scholar 

  100. Wang, Y., Li, P.: Research on evaluation of digital man-machine interface of nuclear power plant based on personnel performance. Atomic Energy Sci. Technol. 55(03), 534–543 (2021)

    Google Scholar 

  101. Hellianto, G.R., Iqbal, B.M., Komarudin: Ergonomics evaluation of game interface design provisions on various computer based monitor screens. In: Proceedings of the 2017 International Conference on Industrial Design Engineering-ICIDE 2017, Dubai, United Arab Emirates, pp. 38–44. ACM Press (2017)

    Google Scholar 

  102. Muslim, E., Lestari, R.A., Hazmy, A.I., Alvina, S.: User interface evaluation of mobile application KRL access using user experience approach. IOP Conf. Ser. Mater. Sci. Eng. 508, 012110 (2019)

    Google Scholar 

  103. Wang, D., Qu, Y.: Research on human-computer interface evaluation of allegation system based on EEG indicators. J. Ordnance Equipment Eng. 42(11), 196–203 (2021)

    Google Scholar 

  104. Guo, F., Qian, X.: Human Factor Engineering, 1st edn. China Machine Press, Beijing (2005)

    Google Scholar 

  105. Grey system theory. https://baike.baidu.com/item/%E7%81%B0%E8%89%B2%E7%B3%BB%E7%BB%9F%E7%90%86%E8%AE%BA/2262621?fr=aladdin. Accessed 22 Apr 2022

  106. Xia, C., Li, Q., Liu, Y.: Research on evaluation method in human-machine interface based on grey interval clustering. J. Jiamusi Univ. (Nat. Sci. Ed.) 38(02), 37–39 (2020)

    Google Scholar 

  107. Jin, X., Mao, E., Song, Z.: Study on qualitative classification evaluation method of vehicle cab human-machine interface. In: Advances in Man-Machine-Environment Systems Engineering, vol. 07 (2005)

    Google Scholar 

  108. Wang, Lu., Xue, Q., Hao, J., Yu, H.: Research of human-machine interface evaluation based on Cogtool. In: Yamamoto, S., Mori, H. (eds.) HCII 2019. LNCS, vol. 11569, pp. 371–391. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22660-2_27

    Chapter  Google Scholar 

  109. Guo, Y.: Theory and Method of Comprehensive Evaluation, 1st edn. Science Press, Beijing (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintai Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X., Liu, M., Gong, L., Gu, Y., Shidujaman, M. (2023). A Review of Human-Computer Interface Evaluation Research Based on Evaluation Process Elements. In: Kurosu, M., Hashizume, A. (eds) Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14011. Springer, Cham. https://doi.org/10.1007/978-3-031-35596-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35596-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35595-0

  • Online ISBN: 978-3-031-35596-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics