Skip to main content

Evaluating the Outcome of Collaborative VR Mind Mapping Sessions with Sentiment Analysis and Emotional Intelligence

  • Conference paper
  • First Online:
Human-Computer Interaction (HCII 2023)

Abstract

Collaborative brainstorming harbours various positive effects: Enhancement of creativity and social skills, broader discussions and contributions, and instant feedback [28, 46], while the technique of mind mapping simultaneously visualises the results of this process. Using a Virtual Reality (VR) application, a technology increasingly adopted for ideation [23, 44], this study creates a setting that allows collaborators to produce meaningful results in an immersive digital environment. By nature, group settings remain complex and dynamic, with emotions playing a significant role in the outcome [2]. So far, emotional responses have mainly been researched through biophysical responses on a single-user basis [13].

To assess the complex relationship between emotional intelligence (EI) and the language-based results of collaborations, a mind-mapping task was analysed through performance and sentiment analysis, a natural language processing (NLP) technique that identifies the polarity of a given text. We examine the outcome of 13 sessions (N=39) in VR by distinguishing the results into problem-orientation and solution-orientation before applying a fine-tuned language model to get detailed information on the emotional polarity of the results. This mixed-level data analysis shall bridge the gap between self-assessment questionnaires and support the automated group work evaluation by analysing results on an objective scale. Although enhanced problem orientation could not be connected to specific emotions in the sentiment analysis, our results have shown significant relationships between the number of solutions created and the emotions of joy and surprise and a significant negative relationship with the emotion of sadness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ain, N.U., Munir, M., Suneel, I.: Role of emotional intelligence and grit in life satisfaction. Heliyon 7(4), e06829 (2021). https://doi.org/10.1016/j.heliyon.2021.e06829

    Article  Google Scholar 

  2. Alharbi, R., Alnoor, A.: The influence of emotional intelligence and personal styles of dealing with conflict on strategic decisions. PSU Research Review(ahead-of-print) (2022)

    Google Scholar 

  3. Amabile, T.M.: The social psychology of creativity: a componential conceptualization. J. Pers. Soc. Psychol. 45(2), 357–376 (1983). https://doi.org/10.1037/0022-3514.45.2.357

    Article  Google Scholar 

  4. Balint, B.N.: [DC] Designing VR for teamwork: the influence of HMD VR communication capabilities on teamwork competencies. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 2019, pp. 1365–1366 (2019). https://doi.org/10.1109/VR.2019.8798147

  5. Barron, B.: When smart groups fail. J. Learn. Sci. 12(3), 307–359 (2003). https://doi.org/10.1207/S15327809JLS1203_1

  6. Bernardi, R.A., Guptill, S.T.: Social desirability response bias, gender, and factors influencing organizational commitment: an international study. J. Bus. Ethics 81, 797–809 (2008). https://doi.org/10.1007/s10551-007-9548-4

    Article  Google Scholar 

  7. Bhagwatwar, A., Massey, A., Dennis, A.: Contextual priming and the design of 3D virtual environments to improve group ideation. Inf. Syst. Res. 29(1), 169–85 (2018)

    Article  Google Scholar 

  8. Brackett, M.A., Salovey, P.: Measuring emotional intelligence with the Mayer-Salovery-Caruso emotional intelligence test (MSCEIT). Psicothema, 18 Suppl, 34–41 (2006). https://www.ncbi.nlm.nih.gov/pubmed/17295955

  9. Caruso, D.R. (n.d.). Msceit resource sample report - talentlens. Mayer-Salovey-Caruso emotional intelligence test. Retrieved February 9, (2023). www.talentlens.com.au/userfiles/MSCEIT%20Resource%20Sample%20Report.pdf

  10. Chen, C., Yang, C., Huang, K., Yao, K.: Augmented reality and competition in robotics education: effects on 21st century competencies, group collaboration and learning motivation. J. Comput. Assist. Learn. 36 (2020). https://doi.org/10.1111/jcal.12469

  11. Chi, M.T.H., Glaser, R., Rees, E.: Expertise in problem solving. In: Sternberg, R. (ed.) Advances in the Psychology of Human Intelligence, pp. 1–75. Erlbaum, Hillsdale, NJ (1982)

    Google Scholar 

  12. Coding Leap. (2021). NODA.io (version 1.41). [VR app] Accessed 15 Sept 2022

    Google Scholar 

  13. Collins, J., Regenbrecht, H., Langlotz, T., Said Can, Y., Ersoy C., Butson. R.: Measuring cognitive load and insight: a methodology exemplified in a virtual reality learning context. In: 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Beijing, China, pp. 351–362 https://doi.org/10.1109/ISMAR.2019.00033

  14. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv https://doi.org/10.48550/arXiv.1810.04805

  15. Du, Y., Ma, W., Sun, Q., Sai, L.: Collaborative settings increase dishonesty. Front. Psychol. 12, 650032 (2021). https://doi.org/10.3389/fpsyg.2021.650032

    Article  Google Scholar 

  16. Druskat, V.U., Wolff, S.B.: Building the emotional intelligence of groups. Harvard Bus. Rev. 79, 80–90 (2001)

    Google Scholar 

  17. Forens, M., Bonnardel, N., Barbier, M.-L.: How communication modalities can impact group creativity in multi-user virtual environments. In: Proceedings of the European Conference on Cognitive Ergonomics 2015, ECCE’15. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2788412.2788439

  18. Gao, Y., Chen, A., Chi, S., Zhang, G., Hao, A.: Analysis of emotional tendency and syntactic properties of VR game reviews. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 2022, pp. 648–649 (2022). https://doi.org/10.1109/VRW55335.2022.00175

  19. Geszten, D., Komlódi, A., Hercegfi, K., Hámornik, B., Young, A., Köles, M.: A content-analysis approach for exploring usability problems in a collaborative virtual environment. Acta Polytechnica Hungarica 2018 Nov 06;15(5), 67 (2018)

    Google Scholar 

  20. Gong, Z., Nanjappan, V., Soomro, S. A., Georgiev, G.V.: Virtual brainstorming and creativity: an analysis of measures, avatars, environments, interfaces, and applications. In: Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16–20 August 2021 (2021). https://doi.org/10.1017/pds.2021.601

  21. Hutto, C.J., Gilbert, E.E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014 (2014)

    Google Scholar 

  22. Jenkins, S., Delbridge, R.: Exploring Organizational Deception: Organizational Contexts. Organization Theory, Social Relations and Types of Lying (2020). https://doi.org/10.1177/2631787720919436

  23. Jin, Y., Lee, S.: Designing in virtual reality: a comparison of problem-solving styles between desktop and VR environments. Digital Creativity 30(2), 107–126 (2019)

    Article  Google Scholar 

  24. Jonassen, D.H., Kwon, H.I.: Communication patterns in computer mediated versus face-to-face group problem solving. Education Tech. Research Dev. 49(1), 35–51 (2001). https://doi.org/10.2307/30220298

    Article  Google Scholar 

  25. Jordan, P.J., Lawrence, S.A.: Emotional intelligence in teams: development and initial validation of the short version of the workgroup emotional intelligence profile (WEIP-S). J. Manage. Organ. 15, 452–69 (2009)

    Article  Google Scholar 

  26. Khassawneh, O., Mohammad, T., Ben-Abdallah, R., Alabidi, S.: The Relationship between Emotional Intelligence and Educators’ Performance in Higher Education Sector. Behav. Sci. 12(12) (2022)

    Google Scholar 

  27. Kwon, K., Song, D., Sari, A.R., Khikmatillaeva, U.: Different types of collaborative problem-solving processes in an online environment: solution-oriented versus problem-oriented. J. Educ. Comput. Res. 56(8), 1277–1295 (2019). https://doi.org/10.1177/0735633117740395

    Article  Google Scholar 

  28. Lailiyah, L., Setiyaningsih, L.A., Wediyantoro, P.L., Yustisia, K.K.: Assessing an effective collaboration in higher education: a study of students’ experiences and challenges on group collaboration. EnJourMe (English Journal of Merdeka): Culture, Language, and Teaching of English, 6(2) 152–162 (2021). https://doi.org/10.26905/enjourme.v6i2.691

  29. Lampropoulos, G., Keramopoulos, E.: Virtual reality in education: a comparative social media data and sentiment analysis study. Int. J. Recent Contrib. Eng. Sci. IT (iJES). 10, 19–32 (2022). https://doi.org/10.3991/ijes.v10i03.34057

    Article  Google Scholar 

  30. Marsic, I., Dorohonceanu, B.: Flexible user interfaces for group collaboration. Int. J. Hum.-Comput. Interact. 15, 337–360 (2004). https://doi.org/10.1207/S15327590IJHC1503_02

    Article  Google Scholar 

  31. Mayer J.D., DiPaolo M., Salovey P. Perceiving affective content in ambiguous visual stimuli: a component of emotional intelligence. J Pers Assess. 54(3-4), 772-781 (1990). Summer. https://doi.org/10.1080/00223891.1990.9674037. PMID: 2348356

  32. Mayer, J.D.: MSCEIT: Mayer-Salovey-Caruso Emotional Intelligence Test. Multi-Health Systems, Toronto, Canada (2002)

    Google Scholar 

  33. Nijstad, B.A., Stroebe, W.: How the group affects the mind: a cognitive model of idea generation in groups. Personality and social psychology review: an official journal of the Society for Personality and Social Psychology Inc, 10(3), 186–213 (2006). https://doi.org/10.1207/s15327957pspr1003_1

  34. Osborn, A.: Applied Imagination: Principles and Procedures of Creative Problem Solving. Charles Scribner’s Sons, New York, New York (1953)

    Google Scholar 

  35. Palos Sánchez, P., Folgado-Fernández, J., Rojas Sánchez, M.: Virtual reality technology: analysis based on text and opinion mining. Math. Biosci. Eng. 19(8), 7856–7885 (2022). https://doi.org/10.3934/mbe.2022367

  36. Pimentel, J.L., Pimentel, J.: Some biases in Likert scaling usage and its correction. Int. J. Sci.: Basic Appl. Res. (IJSBAR) 45(1), 183–191 (2019)

    Google Scholar 

  37. Sanchez, D.R., Weiner, E., Van Zelderen, A.: Virtual reality assessments (VRAs): exploring the reliability and validity of evaluations in VR. Int. J. Select. Assess. 30(1), 103–125 (2022). https://doi.org/10.1111/ijsa.12369

    Article  Google Scholar 

  38. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (2019). arXiv https://doi.org/10.48550/arXiv.1910.01108

  39. Savani, B.: Distilbert-base-uncased-emotion, model card (2021). https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion

  40. Schroeder, R.: Defining Virtual worlds and virtual environments. J. Virtual Worlds Res. 1(1), 1 (2008). https://doi.org/10.4101/jvwr.v1i1.294

  41. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  42. Stanney, K.M., Mollaghasemi, M., Reeves, L.: Development of MAUVE: the multi-criteria assessment of usability for virtual environments system. Final report, contract no.N61339-99-C-0098, Orlando, FL: Naval Air Warfare Center, Training Systems Division, 8/00 (2000)

    Google Scholar 

  43. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992). https://doi.org/10.1111/j.1460-2466.1992.tb00812.x

    Article  Google Scholar 

  44. Yang, E.K., Lee, J.H.: Cognitive impact of virtual reality sketching on designers’ concept generation. Digital Creativity 31(2), 82–97 (2020)

    Article  MathSciNet  Google Scholar 

  45. Zarifsanaiey, N., Mehrabi, Z., Kashefian-Naeeini, S., Mustapha, R.: The effects of digital storytelling with group discussion on social and emotional intelligence among female elementary school students. Cogent Psychol. 9(1), 2004872 (2022). https://doi.org/10.1080/23311908.2021.2004872

    Article  Google Scholar 

  46. Zielasko, D., et al.: Remain seated: towards fully-immersive desktop VR (2017). https://doi.org/10.1109/WEVR.2017.7957707

Download references

Acknowledgement

We would like to show our gratitude to Shao-Ying Lin, Yu-Xuan Dai, Vu-Hong Lan, and all of the participants who have contributed to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Kozachek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozachek, D., Yaqin, M.A., Prasad, K., Wang, SM. (2023). Evaluating the Outcome of Collaborative VR Mind Mapping Sessions with Sentiment Analysis and Emotional Intelligence. In: Kurosu, M., Hashizume, A. (eds) Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14012. Springer, Cham. https://doi.org/10.1007/978-3-031-35599-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35599-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35598-1

  • Online ISBN: 978-3-031-35599-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics