Skip to main content

An Architecture for Transforming Companion Robots into Psychosocial Robotic Surrogates

  • Conference paper
  • First Online:
Human-Computer Interaction (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14013))

Included in the following conference series:

  • 1175 Accesses

Abstract

The issues associated with remote work-life balance became apparent during the quarantine protocols that were put in place because of the COVID-19 pandemic. This led to additional stress associated with working from home when under quarantine. The start of the 2022–23 flu season saw the newly coined term tripledemic being used to describe the COVID-19, RSV and flu diseases affecting large portions of the population. This indicates there will always be a challenge to reduce the stressors associated with work-from-home arrangements – especially in households with at-risk family members. A possible solution to this problem is the use of robotic avatars, which is a “system that can transport your senses, actions and presence to a remote location in real time and feel as if you’re actually there.” Typical applications of robotic avatars include disaster relief in dangerous places; avatar tourism; remote teaching; remote collaborations and remote surgeries. This paper investigates the idea of a psychosocial robotic surrogate by using a companion robot to address issues that occur in psychosocial contexts. We address these psychosocial aspects of the human-robot relationship by having the companion robot act as a psychosocial surrogate instead of as a physical avatar. The paper discusses previous work on using avatars in social contexts; the architecture we have developed to facilitate psychosocial robotic surrogacy using a companion robot; and the results obtained so fare with the architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chamorro-Premuzic, T., Ahmetoglu, G.: The pros and cons of robot managers. Harv. Bus. Rev. 12, 2–5 (2016)

    Google Scholar 

  2. Yam, K.C., Goh, E.-Y., Fehr, R., Lee, R., Soh, H., Gray, K.: When your boss is a robot: workers are more spiteful to robot supervisors that seem more human. J. Exp. Soc. Psychol. 102, 104360 (2022)

    Article  Google Scholar 

  3. Noguchi, Y., Kamide, H., Tanaka, F.: Personality traits for a social mediator robot encouraging elderly self-disclosure on loss experiences. J. Hum. Robot Interact. 9(3), 1–24 (2020). https://doi.org/10.1145/3377342

    Article  Google Scholar 

  4. Masuyama, N., Loo, C.K.: Robotic emotional model with personality factors based on Pleasant-Arousal scaling model. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 19–24 (2015). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7333657. Accessed 02 Dec 2016

  5. Mileounis, A., Cuijpers, R.H., Barakova, E.I.: Creating robots with personality: the effect of personality on social intelligence. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds.) Artificial Computation in Biology and Medicine, pp. 119–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18914-7_13

    Chapter  Google Scholar 

  6. Law, E., et al.: A wizard-of-oz study of curiosity in human-robot interaction. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 607–614 (2017)

    Google Scholar 

  7. Ceha, J., et al.: Expression of curiosity in social robots: Design, perception, and effects on behaviour. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  8. Ghorayshi, A., Rabin, R.C.: Teen Girls Report Record Levels of Sadness, C.D.C. Finds. The New York Times (2023). https://www.nytimes.com/2023/02/13/health/teen-girls-sadness-suicide-violence.html. Accessed 07 Mar 2023

  9. Ghafurian, M., Ellard, C., Dautenhahn, K.: Social companion robots to reduce isolation: a perception change due to COVID-19. In: Ardito, C., et al. (eds.) Human-Computer Interaction – INTERACT 2021. LNCS, vol. 12933, pp. 43–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85616-8_4

    Chapter  Google Scholar 

  10. Nilsson, N.J.: A Mobile Automaton: An Application of Artificial Intelligence Techniques. Sri International Menlo Park CA Artificial Intelligence Center (1969)

    Google Scholar 

  11. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  12. Kortenkamp, D., Simmons, R., Brugali, D.: Robotic systems architectures and programming. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 283–306. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_12

    Chapter  Google Scholar 

  13. Payton, D.: An architecture for reflexive autonomous vehicle control. In: 1986 IEEE International Conference on Robotics and Automation Proceedings, vol. 3, pp. 1838–1845 (1986). https://doi.org/10.1109/ROBOT.1986.1087458

  14. Arkin, R.C.: Motor schema – based mobile robot navigation. Int. J. Robot. Res. 8(4), 92–112 (1989). https://doi.org/10.1177/027836498900800406

    Article  Google Scholar 

  15. Peshkin, M.A., Colgate, J.E., Wannasuphoprasit, W., Moore, C.A., Gillespie, R.B., Akella, P.: Cobot architecture. IEEE Trans. Robot. Autom. 17(4), 377–390 (2001)

    Article  Google Scholar 

  16. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Netw. 26(3), 21–28 (2012)

    Article  Google Scholar 

  17. Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst. 6(1), 105–122 (1990). https://doi.org/10.1016/S0921-8890(05)80031-4

    Article  Google Scholar 

  18. Rosenblatt, J.K.: DAMN: a distributed architecture for mobile navigation. J. Exp. Theor. Artif. Intell. 9(2–3), 339–360 (1997). https://doi.org/10.1080/095281397147167

    Article  Google Scholar 

  19. Kim, J.-H., Jeong, I.-B., Park, I.-W., Lee, K.-H.: Multi-layer architecture of ubiquitous robot system for integrated services. Int J. Soc. Robot. 1(1), 19–28 (2009). https://doi.org/10.1007/s12369-008-0005-z

    Article  Google Scholar 

  20. Duffy, B.R., Dragone, M., O’Hare, G.M.: The social robot architecture: a framework for explicit social interaction. In: Android Science: Towards Social Mechanisms, CogSci 2005 Workshop, Stresa, Italy, pp. 3–4 (2005)

    Google Scholar 

  21. Nakauchi, Y., Simmons, R.: A social robot that stands in line. Auton. Robot. 12(3), 313–324 (2002). https://doi.org/10.1023/A:1015273816637

    Article  MATH  Google Scholar 

  22. Thrun, S., et al.: Probabilistic algorithms and the interactive museum tour-guide robot Minerva. Int. J. Robot. Res. 19(11), 972–999 (2000). https://doi.org/10.1177/02783640022067922

    Article  Google Scholar 

  23. Asprino, L., Ciancarini, P., Nuzzolese, A.G., Presutti, V., Russo, A.: A reference architecture for social robots. J. Web Semant. 72, 100683 (2022). https://doi.org/10.1016/j.websem.2021.100683

    Article  Google Scholar 

  24. Barber, R., Salichs, M.A.: A new human based architecture for intelligent autonomous robots. IFAC Proc. Vol. 34(19), 81–86 (2001)

    Article  Google Scholar 

  25. Gross, H.-M., et al.: ‘I’ll keep an eye on you: home robot companion for elderly people with cognitive impairment. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2481–2488 (2011). https://doi.org/10.1109/ICSMC.2011.6084050

  26. Cao, H.-L., et al.: A personalized and platform-independent behavior control system for social robots in therapy: development and applications. IEEE Trans. Cogn. Dev. Syst. 11(3), 334–346 (2019). https://doi.org/10.1109/TCDS.2018.2795343

    Article  MathSciNet  Google Scholar 

  27. Louie, W.-Y.G., Vaquero, T., Nejat, G., Beck, J.C.: An autonomous assistive robot for planning, scheduling and facilitating multi-user activities. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5292–5298 (2014). https://doi.org/10.1109/ICRA.2014.6907637

  28. Portugal, D., Alvito, P., Christodoulou, E., Samaras, G., Dias, J.: A study on the deployment of a service robot in an elderly care center. Int. J. Soc. Robot. 11(2), 317–341 (2018). https://doi.org/10.1007/s12369-018-0492-5

    Article  Google Scholar 

  29. Coşar, S., et al.: ENRICHME: perception and interaction of an assistive robot for the elderly at home. Int. J. Soc. Robot. 12(3), 779–805 (2020). https://doi.org/10.1007/s12369-019-00614-y

    Article  Google Scholar 

  30. Fan, J., et al.: A robotic coach architecture for elder care (ROCARE) based on multi-user engagement models. IEEE Trans. Neural Syst. Rehabil. Eng. 25(8), 1153–1163 (2017). https://doi.org/10.1109/TNSRE.2016.2608791

    Article  Google Scholar 

  31. Mehlmann, G., Häring, M., Janowski, K., Baur, T., Gebhard, P., André, E.: ‘Exploring a model of gaze for grounding in multimodal HRI. In: Proceedings of the 16th International Conference on Multimodal Interaction, New York, NY, USA, pp. 247–254 (2014). https://doi.org/10.1145/2663204.2663275

  32. Kollar, S., Roy, T.D., Roy, N.: Grounding verbs of motion in natural language commands to robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics: The 12th International Symposium on Experimental Robotics, pp. 31–47. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-28572-1_3

  33. Jung, M.F.: Affective grounding in human-robot interaction. In: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 263–273 (2017)

    Google Scholar 

  34. Samarakoon, S.M.B.P., Muthugala, M.A.V.J., Jayasekara, A.G.B.P.: A review on human–robot proxemics. Electronics 11(16), 16 (2022). https://doi.org/10.3390/electronics11162490

    Article  Google Scholar 

  35. Schüle, M., Kraus, J.M., Babel, F., Reißner, N.: Patients trust in hospital transport robots: evaluation of the role of user dispositions, anxiety, and robot characteristics. In: 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 246–255 (2022). https://doi.org/10.1109/HRI53351.2022.9889635

  36. Malfaz, M., Castro-Gonzalez, Á., Barber, R., Salichs, M.A.: A biologically inspired architecture for an autonomous and social robot. IEEE Trans. Auton. Ment. Dev. 3(3), 232–246 (2011). https://doi.org/10.1109/TAMD.2011.2112766

    Article  Google Scholar 

  37. Hastie, R., Kumar, P.A.: Person memory: personality traits as organizing principles in memory for behaviors. J. Pers. Soc. Psychol. 37(1), 25–38 (1979). https://doi.org/10.1037/0022-3514.37.1.25

    Article  Google Scholar 

  38. Taconnat, L., et al.: Personality traits affect older adults’ memory differently depending on the environmental support provided at encoding. Pers. Individ. Differ. 191, 111572 (2022). https://doi.org/10.1016/j.paid.2022.111572

    Article  Google Scholar 

  39. Gittens, C.L.: A psychologically-realistic personality model for virtual agents. In: Behavior Engineering and Applications, pp. 81–99. Springer (2018)

    Chapter  Google Scholar 

  40. Goldberg, L.R., et al.: The international personality item pool and the future of public-domain personality measures. J. Res. Pers. 40(1), 84–96 (2006). https://doi.org/10.1016/j.jrp.2005.08.007

    Article  Google Scholar 

  41. Pazdniakou, A., Adler, P.M.: Lattice spring models. Transp. Porous Med. 93(2), 243–262 (2012). https://doi.org/10.1007/s11242-012-9955-6

    Article  MathSciNet  Google Scholar 

  42. Gebhard, P.: ALMA: a layered model of affect. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems – AAMAS 2005, The Netherlands, p. 29 (2005). https://doi.org/10.1145/1082473.1082478

  43. Belle, S., Gittens, C., Nicholas Graham, T.C.: A framework for creating non-player characters that make psychologically-driven decisions. In: 2022 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–7 (2022). https://doi.org/10.1109/ICCE53296.2022.9730383

  44. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996). https://doi.org/10.1007/BF02686918

    Article  Google Scholar 

  45. Schramowski, P., Turan, C., Jentzsch, S., Rothkopf, C., Kersting, K.: The moral choice machine. Front. Artif. Intell. 3, 36 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis L. Gittens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gittens, C.L. (2023). An Architecture for Transforming Companion Robots into Psychosocial Robotic Surrogates. In: Kurosu, M., Hashizume, A. (eds) Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14013. Springer, Cham. https://doi.org/10.1007/978-3-031-35602-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35602-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35601-8

  • Online ISBN: 978-3-031-35602-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics