Abstract
The issues associated with remote work-life balance became apparent during the quarantine protocols that were put in place because of the COVID-19 pandemic. This led to additional stress associated with working from home when under quarantine. The start of the 2022–23 flu season saw the newly coined term tripledemic being used to describe the COVID-19, RSV and flu diseases affecting large portions of the population. This indicates there will always be a challenge to reduce the stressors associated with work-from-home arrangements – especially in households with at-risk family members. A possible solution to this problem is the use of robotic avatars, which is a “system that can transport your senses, actions and presence to a remote location in real time and feel as if you’re actually there.” Typical applications of robotic avatars include disaster relief in dangerous places; avatar tourism; remote teaching; remote collaborations and remote surgeries. This paper investigates the idea of a psychosocial robotic surrogate by using a companion robot to address issues that occur in psychosocial contexts. We address these psychosocial aspects of the human-robot relationship by having the companion robot act as a psychosocial surrogate instead of as a physical avatar. The paper discusses previous work on using avatars in social contexts; the architecture we have developed to facilitate psychosocial robotic surrogacy using a companion robot; and the results obtained so fare with the architecture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chamorro-Premuzic, T., Ahmetoglu, G.: The pros and cons of robot managers. Harv. Bus. Rev. 12, 2–5 (2016)
Yam, K.C., Goh, E.-Y., Fehr, R., Lee, R., Soh, H., Gray, K.: When your boss is a robot: workers are more spiteful to robot supervisors that seem more human. J. Exp. Soc. Psychol. 102, 104360 (2022)
Noguchi, Y., Kamide, H., Tanaka, F.: Personality traits for a social mediator robot encouraging elderly self-disclosure on loss experiences. J. Hum. Robot Interact. 9(3), 1–24 (2020). https://doi.org/10.1145/3377342
Masuyama, N., Loo, C.K.: Robotic emotional model with personality factors based on Pleasant-Arousal scaling model. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 19–24 (2015). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7333657. Accessed 02 Dec 2016
Mileounis, A., Cuijpers, R.H., Barakova, E.I.: Creating robots with personality: the effect of personality on social intelligence. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds.) Artificial Computation in Biology and Medicine, pp. 119–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18914-7_13
Law, E., et al.: A wizard-of-oz study of curiosity in human-robot interaction. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 607–614 (2017)
Ceha, J., et al.: Expression of curiosity in social robots: Design, perception, and effects on behaviour. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)
Ghorayshi, A., Rabin, R.C.: Teen Girls Report Record Levels of Sadness, C.D.C. Finds. The New York Times (2023). https://www.nytimes.com/2023/02/13/health/teen-girls-sadness-suicide-violence.html. Accessed 07 Mar 2023
Ghafurian, M., Ellard, C., Dautenhahn, K.: Social companion robots to reduce isolation: a perception change due to COVID-19. In: Ardito, C., et al. (eds.) Human-Computer Interaction – INTERACT 2021. LNCS, vol. 12933, pp. 43–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85616-8_4
Nilsson, N.J.: A Mobile Automaton: An Application of Artificial Intelligence Techniques. Sri International Menlo Park CA Artificial Intelligence Center (1969)
Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)
Kortenkamp, D., Simmons, R., Brugali, D.: Robotic systems architectures and programming. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 283–306. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_12
Payton, D.: An architecture for reflexive autonomous vehicle control. In: 1986 IEEE International Conference on Robotics and Automation Proceedings, vol. 3, pp. 1838–1845 (1986). https://doi.org/10.1109/ROBOT.1986.1087458
Arkin, R.C.: Motor schema – based mobile robot navigation. Int. J. Robot. Res. 8(4), 92–112 (1989). https://doi.org/10.1177/027836498900800406
Peshkin, M.A., Colgate, J.E., Wannasuphoprasit, W., Moore, C.A., Gillespie, R.B., Akella, P.: Cobot architecture. IEEE Trans. Robot. Autom. 17(4), 377–390 (2001)
Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Netw. 26(3), 21–28 (2012)
Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst. 6(1), 105–122 (1990). https://doi.org/10.1016/S0921-8890(05)80031-4
Rosenblatt, J.K.: DAMN: a distributed architecture for mobile navigation. J. Exp. Theor. Artif. Intell. 9(2–3), 339–360 (1997). https://doi.org/10.1080/095281397147167
Kim, J.-H., Jeong, I.-B., Park, I.-W., Lee, K.-H.: Multi-layer architecture of ubiquitous robot system for integrated services. Int J. Soc. Robot. 1(1), 19–28 (2009). https://doi.org/10.1007/s12369-008-0005-z
Duffy, B.R., Dragone, M., O’Hare, G.M.: The social robot architecture: a framework for explicit social interaction. In: Android Science: Towards Social Mechanisms, CogSci 2005 Workshop, Stresa, Italy, pp. 3–4 (2005)
Nakauchi, Y., Simmons, R.: A social robot that stands in line. Auton. Robot. 12(3), 313–324 (2002). https://doi.org/10.1023/A:1015273816637
Thrun, S., et al.: Probabilistic algorithms and the interactive museum tour-guide robot Minerva. Int. J. Robot. Res. 19(11), 972–999 (2000). https://doi.org/10.1177/02783640022067922
Asprino, L., Ciancarini, P., Nuzzolese, A.G., Presutti, V., Russo, A.: A reference architecture for social robots. J. Web Semant. 72, 100683 (2022). https://doi.org/10.1016/j.websem.2021.100683
Barber, R., Salichs, M.A.: A new human based architecture for intelligent autonomous robots. IFAC Proc. Vol. 34(19), 81–86 (2001)
Gross, H.-M., et al.: ‘I’ll keep an eye on you: home robot companion for elderly people with cognitive impairment. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2481–2488 (2011). https://doi.org/10.1109/ICSMC.2011.6084050
Cao, H.-L., et al.: A personalized and platform-independent behavior control system for social robots in therapy: development and applications. IEEE Trans. Cogn. Dev. Syst. 11(3), 334–346 (2019). https://doi.org/10.1109/TCDS.2018.2795343
Louie, W.-Y.G., Vaquero, T., Nejat, G., Beck, J.C.: An autonomous assistive robot for planning, scheduling and facilitating multi-user activities. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5292–5298 (2014). https://doi.org/10.1109/ICRA.2014.6907637
Portugal, D., Alvito, P., Christodoulou, E., Samaras, G., Dias, J.: A study on the deployment of a service robot in an elderly care center. Int. J. Soc. Robot. 11(2), 317–341 (2018). https://doi.org/10.1007/s12369-018-0492-5
Coşar, S., et al.: ENRICHME: perception and interaction of an assistive robot for the elderly at home. Int. J. Soc. Robot. 12(3), 779–805 (2020). https://doi.org/10.1007/s12369-019-00614-y
Fan, J., et al.: A robotic coach architecture for elder care (ROCARE) based on multi-user engagement models. IEEE Trans. Neural Syst. Rehabil. Eng. 25(8), 1153–1163 (2017). https://doi.org/10.1109/TNSRE.2016.2608791
Mehlmann, G., Häring, M., Janowski, K., Baur, T., Gebhard, P., André, E.: ‘Exploring a model of gaze for grounding in multimodal HRI. In: Proceedings of the 16th International Conference on Multimodal Interaction, New York, NY, USA, pp. 247–254 (2014). https://doi.org/10.1145/2663204.2663275
Kollar, S., Roy, T.D., Roy, N.: Grounding verbs of motion in natural language commands to robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics: The 12th International Symposium on Experimental Robotics, pp. 31–47. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-28572-1_3
Jung, M.F.: Affective grounding in human-robot interaction. In: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 263–273 (2017)
Samarakoon, S.M.B.P., Muthugala, M.A.V.J., Jayasekara, A.G.B.P.: A review on human–robot proxemics. Electronics 11(16), 16 (2022). https://doi.org/10.3390/electronics11162490
Schüle, M., Kraus, J.M., Babel, F., Reißner, N.: Patients trust in hospital transport robots: evaluation of the role of user dispositions, anxiety, and robot characteristics. In: 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 246–255 (2022). https://doi.org/10.1109/HRI53351.2022.9889635
Malfaz, M., Castro-Gonzalez, Á., Barber, R., Salichs, M.A.: A biologically inspired architecture for an autonomous and social robot. IEEE Trans. Auton. Ment. Dev. 3(3), 232–246 (2011). https://doi.org/10.1109/TAMD.2011.2112766
Hastie, R., Kumar, P.A.: Person memory: personality traits as organizing principles in memory for behaviors. J. Pers. Soc. Psychol. 37(1), 25–38 (1979). https://doi.org/10.1037/0022-3514.37.1.25
Taconnat, L., et al.: Personality traits affect older adults’ memory differently depending on the environmental support provided at encoding. Pers. Individ. Differ. 191, 111572 (2022). https://doi.org/10.1016/j.paid.2022.111572
Gittens, C.L.: A psychologically-realistic personality model for virtual agents. In: Behavior Engineering and Applications, pp. 81–99. Springer (2018)
Goldberg, L.R., et al.: The international personality item pool and the future of public-domain personality measures. J. Res. Pers. 40(1), 84–96 (2006). https://doi.org/10.1016/j.jrp.2005.08.007
Pazdniakou, A., Adler, P.M.: Lattice spring models. Transp. Porous Med. 93(2), 243–262 (2012). https://doi.org/10.1007/s11242-012-9955-6
Gebhard, P.: ALMA: a layered model of affect. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems – AAMAS 2005, The Netherlands, p. 29 (2005). https://doi.org/10.1145/1082473.1082478
Belle, S., Gittens, C., Nicholas Graham, T.C.: A framework for creating non-player characters that make psychologically-driven decisions. In: 2022 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–7 (2022). https://doi.org/10.1109/ICCE53296.2022.9730383
Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996). https://doi.org/10.1007/BF02686918
Schramowski, P., Turan, C., Jentzsch, S., Rothkopf, C., Kersting, K.: The moral choice machine. Front. Artif. Intell. 3, 36 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gittens, C.L. (2023). An Architecture for Transforming Companion Robots into Psychosocial Robotic Surrogates. In: Kurosu, M., Hashizume, A. (eds) Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14013. Springer, Cham. https://doi.org/10.1007/978-3-031-35602-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-35602-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35601-8
Online ISBN: 978-3-031-35602-5
eBook Packages: Computer ScienceComputer Science (R0)