Skip to main content

Detecting Swarm Degradation: Measuring Human and Machine Performance

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14027))

Included in the following conference series:

  • 966 Accesses

Abstract

Swarms comprise robotic assets that operate via local control algorithms. As these technologies come online, understanding how humans interact with these systems becomes more important. The present work replicated a recent experiment aimed at understanding humans’ competence in identifying when and the extent to which swarms experience degradation (defined as assets breaking from consensus), as asset loss is expected in deployed swarm technologies. The present work also analyzed cluster formation in swarm simulations and explored its relationship with actual degradation. The present work replicated past findings showing people are not competent in detecting and estimating swarm degradation in flocking tasks. However, the cluster analysis showed clusters formed in simulations correlate with swarm reliability. Future work ought to expand investigations of methods to optimize cluster analysis techniques for real-time use. The implications of this work provide suggestions to interface designers on features to display to operators in human-swarm interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiou, E.K., et al.: Towards human–robot teaming: Tradeoffs of explanation-based communication strategies in a virtual search and rescue task. Int. J. Social Robot. 14(5), 1117–1136 (2022)

    Article  Google Scholar 

  2. Murphy, R.R.: How robots helped out after the surfside condo collapse. In: IEEE Spectrum, pp. 1–2. IEEE, New York, NY (2021)

    Google Scholar 

  3. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction with robot swarms: A survey. Trans. Hum.-Mach. Syst. 46(1), 9–26 (2016)

    Article  Google Scholar 

  4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2013)

    Article  Google Scholar 

  5. Abbass, H.A., Hunjet, R.A.: Smart shepherding: towards transparent artificial intelligence enabled human-swarm teams. In: Shepherding UxVs for Human-Swarm Teaming An Artificial Intelligence Approach to Unmanned X Vehicles, Part of the Unmanned System Technologies book series (UST), pp. 1–28. Springer, Manhattan, NY, (2021)

    Google Scholar 

  6. Roundtree, K.A., Cody, J.R., Leaf, J., Onan Demirel, H., Adams, J.A.: Visualization design for human-collective teams. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 63, no. 1, pp. 417–421. SAGE Publications, Los Angeles, CA (2019)

    Google Scholar 

  7. Chung, T.H.: DARPA Offensive Swarm-Enabled Tactics (OFFSET): advancing swarm capabilities. Presented at the Autonomy Community of Interest Scalable Teaming of Autonomous Systems Working Group, DARPA (2020)

    Google Scholar 

  8. Lewis, M., Li, H., Sycara, K.: Chapter 14 – Deep learning, transparency, and trust in human robot teamwork. In: Trust in Human-Robot Interaction, pp. 321–352. Academic Press, Cambridge, Massachusetts (2020)

    Google Scholar 

  9. Adams, J.A., Chen, J.Y., Goodrich M.A.: Swarm transparency. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 45–46. IEEE, New York, NY (2018)

    Google Scholar 

  10. Capiola, A., Hamdan, I., Fox, E.L., Lyons, J.B., Sycara, K., Lewis, M.: “Is something amiss?” Investigating individuals’ competence in estimating swarm degradation. Theor. Issues Ergon. Sci. 23(5), 562–587 (2021)

    Article  Google Scholar 

  11. Hamdan, I., et al.: Exploring the effects of swarm degradations on trustworthiness perceptions, reliance intentions, and reliance behaviors. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 65, no. 1, pp. 1141–1145. SAGE Publications, Los Angeles, CA (2021)

    Google Scholar 

  12. Walker, P., Lewis, M., Sycara, K.: The effect of display type on operator prediction of future swarm states. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002521–002526. IEEE, New York, NY (2016)

    Google Scholar 

  13. Nagavalli, S., Chien, S.Y., Lewis, M., Chakraborty, N., Sycara, K.: Bounds of neglect benevolence in input timing for human interaction with robotic swarms. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 197–204. IEEE, New York, NY (2015)

    Google Scholar 

  14. Capiola, A., et al.: The effects of asset degradation on human trust in swarms. In: International Conference on Human-Computer Interaction, pp. 537–549. Nova, Hauppauge, New York (2020)

    Google Scholar 

  15. Walker, P., Nunnally, S., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K.: Neglect benevolence in human control of swarms in the presence of latency. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3009–3014. IEEE, New York, NY (2012)

    Google Scholar 

  16. Adams, J.A.: Critical considerations for human-robot interface development. In: Proceedings of 2002 AAAI Fall Symposium, pp. 1–8. AAAI Press, Washington, DC (2002)

    Google Scholar 

  17. Hussein, A., Elsawah, S., Abbass, H.A.: The reliability and transparency bases of trust in human-swarm interaction: principles and implications. Ergonomics 63(9), 1116–1132 (2020)

    Article  Google Scholar 

  18. Roundtree, K.A., Goodrich, M.A., Adams, J.A.: Transparency: transitioning from human-machine systems to human-swarm systems. J. Cogn. Eng. Decis. Mak. 13(3), 171–195 (2019)

    Article  Google Scholar 

  19. Hayes, S.T., Adams, J.A.: Human-swarm interaction: Sources of uncertainty. In: 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 170–171. IEEE, New York, NY (2014)

    Google Scholar 

  20. Adams, J.A.: Human-robot interaction design: understanding user needs and requirements. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 49, no. 3, pp. 447–451. Sage Publications, Los Angeles, CA (2005)

    Google Scholar 

  21. Harriott, C.E., Seiffert, A.E., Hayes, S.T., Adams, J.A.: Biologically-inspired human-swarm interaction metrics. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 58, no. 1, pp. 1471–1475. SAGE Publications, Los Angeles, CA (2014)

    Google Scholar 

  22. Walker, P., Lewis, M., Sycara, K.: Characterizing human perception of emergent swarm behaviors. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002436–002441. IEEE, New York, NY (2016)

    Google Scholar 

  23. Im, H.Y., Zhong, S.H., Halberda, J.: Grouping by proximity and the visual impression of approximate number in random dot arrays. Vision. Res. 126, 291–307 (2016)

    Article  Google Scholar 

  24. Lindstedt, J.K., Byrne, M.D.: Simple agglomerative visual grouping for ACT-R. In: Proceedings of the 16th International Conference on Cognitive Modeling, pp. 68–73. ACS Publications, Washington, DC (2018)

    Google Scholar 

  25. Prasad, S.: Different types of clustering methods and applications. Analytix Labs (2022) https://www.analytixlabs.co.in/blog/types-of-clustering-algorithms/

  26. Fuzzy c-means clustering algorithm, Data Clustering Algorithms (2020) https://sites.google.com/site/dataclusteringalgorithms/fuzzy-c-means-clustering-algorithm

  27. R Core Team: The R Project for Statistical Computing, R Foundation for Statistical Computing (2022)

    Google Scholar 

  28. Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A.: NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Soft 61(6), 1–36 (2014)

    Article  Google Scholar 

  29. Yildirim, S.: DBSCAN clustering - explained. Medium (2020) https://towardsdatascience.com/dbscan-clustering-explained-97556a2ad556

  30. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD proceedings, pp. 226–231, KDD, Portland, Oregon (1996)

    Google Scholar 

  31. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: the algorithm gdbscan and its applications. Data Min. Knowl. Disc. 2(2), 169–194 (1998)

    Article  Google Scholar 

  32. Litman, L., Robinson, J., Abberbock, T.: TurkPrime.com: a versatile crowdsourcing data acquisition platform for the behavioral sciences. Behav. Res. Methods 49(2), 433–442 (2016). https://doi.org/10.3758/s13428-016-0727-z

    Article  Google Scholar 

  33. Zhang, Z., Yuan, K.H.: Practical Statistical Power Analysis Using Webpower and R. ISDA Press, New York, NY (2018)

    Book  Google Scholar 

  34. RStudio Team: Open source & professional software for data science teams. RStudio: Integrated Development for R, RStudio, PBC (2022)

    Google Scholar 

  35. Curran, P.G.: Methods for the detection of carelessly invalid responses in survey data. J. Exp. Soc. Psychol. 66, 4–19 (2016)

    Article  Google Scholar 

  36. Bates, D., Mächler, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4”. J. Stat. Soft. 67(1), 1–48 (2015)

    Article  Google Scholar 

  37. Singmann, H., Bolker, B., Westfall, J., Aust, F., Ben-Shachar, M.S.: afex: analysis of factorial experiments. R Package Version 1.0-1 (2015)

    Google Scholar 

  38. Length, R.V., et al.: Estimated marginal means, aka least-squares means. R Package Version 1.7.2 (2022)

    Google Scholar 

  39. Kim, S.: ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 22(6), 665–674 (2015)

    Google Scholar 

  40. Nam, C., Li, H., Li, S., Lewis, M., Sycara, K.: Trust of humans in supervisory control of swarm robots with varied levels of autonomy. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 825–830. IEEE, New York, NY (2018)

    Google Scholar 

  41. De Visser, E.J., Pak, R., Shaw, T.H.: From ‘automation’ to ‘autonomy’: the importance of trust repair in human–machine interaction. Ergonomics 61(10), 1409–1427 (2018)

    Article  Google Scholar 

  42. Chen, J.Y.C., Flemisch, F.O., Lyons, J.B., Neerincx, M.A.: Guest editorial: agent and system transparency. IEEE Trans. Hum-Mach. Syst. 50(3), 189–193 (2020)

    Article  Google Scholar 

  43. Chen, J.Y.C., Lakhmani, S.G., Stowers, K., Selkowitz, A.R., Wright, J.L., Barnes, M.: Situation awareness-based agent transparency and human-autonomy teaming effectiveness. Theor. Issues Ergon. Sci. 19(3), 259–282 (2018)

    Google Scholar 

  44. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors 37(1), 32–64 (1995)

    Article  Google Scholar 

  45. Hepworth, A.J., Baxter, D.P., Hussein, A., Yaxley, K.J., Debie, E., Abbass, H.A.: Human-swarm-teaming transparency and trust architecture. IEEE/CAA J. Autom. Sin. 8(7), 1281–1295 (2020)

    Article  Google Scholar 

  46. Hussein, A., Elsawah, S., Abbass, H.A.: Trust mediating reliability–reliance relationship in supervisory control of human–swarm interactions. Hum. Factors 62(8), 1237–1248 (2020)

    Article  Google Scholar 

  47. Lyons, J.B., Koltai, K.S., Ho, N.T., Johnson, W.B., Smith, D.E., Shively, R.J.: Engineering trust in complex automated systems. Ergon. Des. 24(1), 13–17 (2016)

    Google Scholar 

  48. Mancuso, V., Funke, G.J., Finomore, V., Knott, B.A.: Exploring the effects of “low and slow” cyber attacks on team decision making. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 57, no. 1, pp. 389–393. SAGE Publications, Los Angeles, CA (2013)

    Google Scholar 

  49. Manning, M.D., Harriott, C.E., Hayes, S.T., Adams, J.A., Seiffert, A.E.: Heuristic evaluation of swarm metrics’ effectiveness. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts, pp. 17–18. IEEE, New York, NY (2015)

    Google Scholar 

  50. Mullin, T.: DBSCAN parameter estimation using python. Medium (2020)

    Google Scholar 

Download references

Acknowledgements

Distribution A. Approved for public release; distribution unlimited. AFRL-2022-0735; Cleared 17 February 2022. The views, opinions, and/or findings contained in this article are those of the author and should not be interpreted as representing the official views or policies, either expressed or implied, of the U.S Air Force, Air Force Research Laboratory, or the Department of Defense. This research was supported, in part, by the Air Force Research Laboratory (contract # FA-8650-16-D-6616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August Capiola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capiola, A., Johnson, D., Hamdan, I.a., Lyons, J.B., Fox, E.L. (2023). Detecting Swarm Degradation: Measuring Human and Machine Performance. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2023. Lecture Notes in Computer Science, vol 14027. Springer, Cham. https://doi.org/10.1007/978-3-031-35634-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35634-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35633-9

  • Online ISBN: 978-3-031-35634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics