Skip to main content

Nonlinear Analyses of Electrogastrogram Measurements Taken During Olfactory Stimulation Altering Autonomic Nerve Activity

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14020))

Included in the following conference series:

  • 750 Accesses

Abstract

To investigate the effect of odors on the electrogastrogram (EGG) results, the EGGs were measured during olfactory stimulation with different concentrations of lavender and grapefruit odorants. Because the EGGs have been proven to be nonlinear stochastic processes, nonlinear analyses were used to analyze the EGGs. There was no difference in the translation error estimated by Wayland algorithm for all experimental groups. Moreover, it was shown that the minimum embedding dimensions estimated by the false nearest neighbors (FNN) method varied with respect to the note and concentration of odorants. Because the FNN method adopts an arbitrary threshold setting, we estimated the minimum embedding dimension using our method without the threshold. As a result, the minimum embedding dimension was estimated and determined as 2 for all experimental groups, which is different from that of the FNN method. This is likely because the proposed method is less affected by noise compared to the FNN method. These results suggest that the nonlinear analyses of EGGs are suitable for evaluating the effects of olfactory stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, J., Niijima, A., Tanida, M., Horii, Y., Maeda, K., Nagai, K.: Olfactory stimulation with scent of lavender oil affects autonomic nerves, lipolysis and appetite in rats. Neurosci. Lett. 383(1–2), 188–193 (2005)

    Article  Google Scholar 

  2. Shen, J., Niijima, A., Tanida, M., Horii, Y., Maeda, K., Nagai, K.: Olfactory stimulation with scent of grapefruit oil affects autonomic nerves, lipolysis and appetite in rats. Neurosci. Lett. 380(3), 289–294 (2005)

    Article  Google Scholar 

  3. MPham, W.S., Siripornpanich, V., Piriyapunyaporn, T., Kotchabhakdi, N., Ruangrungsi, N.: The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. J. Med. Assoc. Thai 95(4), 598–606 (2012)

    Google Scholar 

  4. Kawai, E., et al.: Increase in diastolic blood pressure induced by fragrance inhalation of grapefruit essential oil is positively correlated with muscle sympathetic nerve activity. J. Physiol. Sci. 70, 2 (2020)

    Article  Google Scholar 

  5. Alvarez, W.C.: The electrogastrogram and what it shows. J. Am. Med. Assoc. 78, 1116–1118 (1922)

    Article  Google Scholar 

  6. Camilleri, M.: Primer on the Autonomic Nervous System Part III Physiology, 2nd edn. Elsevier, Netherlands (2004)

    Google Scholar 

  7. Matsuura, Y., Takada, H.: Form and its nonlinear analysis for the use of electrogastrogram as a gastrointestinal motility test. Forma 26, 39–50 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  9. King, G.P., Jones, R., Broomhead, D.S.: Phase portraits from a time series: a singular system approach. Nucl. Phys. B Proc. Suppl. 2, 379–390 (1987)

    Google Scholar 

  10. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  12. Kinoshita, F., Fujita, K., Miyanaga, K., Touyama, H., Takada, M., Takada, H.: Nonlinear analysis of electrogastrograms during acute exercise loads. J. Sports Med. Doping Stud. 8(2), 201 (2018)

    Article  Google Scholar 

  13. Nakane, K., Sugiura, A., Takada, H.: Estimating a minimum embedding dimension by false nearest neighbors method without an arbitrary threshold. Adv. Sci. Technol. Eng. Syst. J. 7(4), 114–120 (2022)

    Article  Google Scholar 

  14. Takai, E., Nakane, K., Takada, H.: Estimation of the minimum embedding dimension of a mathematical model describing the electrogastrograms during olfactory stimulation. Bull. Soc. Sci. Form 37(2) (2022, in Press). (in Japanese)

    Google Scholar 

  15. Wayland, R., Bromley, D., Pickett, D., Passamante, A.: Recognizing determinism in a time series. Phys. Rev. Lett. 70(5), 580–582 (1993)

    Article  MATH  Google Scholar 

  16. Takai, E., Aoyagi, T., Ichikawa, K., Matsuura, Y., Kinoshita, F., Takada, H.: Effect of olfactory stimulation with vanilla odor on degree of electrical activity to control gastrointestinal motility. In: Antona, M., Stephanidis, C. (eds.) HCII 2021. LNCS, vol. 12769, pp. 519–530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78095-1_38

    Chapter  Google Scholar 

  17. Frasnelli, J., Manescu, S.: The Intranasal trigeminal system. In: Buettner, A. (ed.) Springer Handbook of Odor. SH, pp. 113–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-26932-0_46

    Chapter  Google Scholar 

  18. Terada, M., et al.: Human TRPA1 activation by terpenes derived from the essential oil of daidai, Citrus aurantium L. var. daidai Makino. Biosci. Biotech. Biochem. 83(9), 1721–1728 (2019)

    Google Scholar 

  19. Premkumar, L.S.: Transient receptor potential channels as targets for phytochemicals. ACS Chem. Neurosci. 5(11), 1117–1130 (2014)

    Article  Google Scholar 

  20. Daiber, P., Genovese, F., Schriever, V.A., Hummel, T., Möhrlen, F., Frings, S.: Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction. Eur. J. Neurosci. 37(4), 572–582 (2013)

    Article  Google Scholar 

  21. Krakovská, A., Mezeiová, K., Budáčová, H.: Use of false nearest neighbours for selecting variables and embedding parameters for state space reconstruction. J. Complex Syst., 932750 (2015)

    Google Scholar 

  22. Gross-Isseroff, R., Lancet, D.: Concentration-dependent changes of perceived odor quality. Chem. Senses 13(2), 191–204 (1988)

    Article  Google Scholar 

  23. Yoishida, S., Saeki, Y.: Effects of fragrances on autonomic nervous system. J. Jpn. Soc. Nurs. Res. 23(4), 11–17 (2000). (in Japanese)

    Google Scholar 

  24. Haze, S., Sakai, K., Gozu, Y.: Effects of fragrance inhalation on sympathetic activity in normal adults. Jpn. J. Pharmacol. 90(3), 247–253 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Takai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takai, E., Nakane, K., Takada, H. (2023). Nonlinear Analyses of Electrogastrogram Measurements Taken During Olfactory Stimulation Altering Autonomic Nerve Activity. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14020. Springer, Cham. https://doi.org/10.1007/978-3-031-35681-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35681-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35680-3

  • Online ISBN: 978-3-031-35681-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics