Skip to main content

Data Visualization Accessibility for Blind and Low Vision Audiences

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14020))

Included in the following conference series:

  • 934 Accesses

Abstract

While data visualizations have the potential to convey vast quantities of information, they are not always accessible to audiences with vision impairments. We prepared and distributed an online survey to blind and low vision adults to investigate the accessibility of data visualizations across the following five mediums—computers, phones, tablets, paper, TVs. After analyzing 45 survey responses, we identified that the inaccessibility is pervasive and that people want to interpret data independently. At present, data visualizations are largely inaccessible to blind and low vision users; however, it is possible to improve accessibility with intentional design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Administration, G.S.: Section 508 of the Rehabilitation Act (1973). https://www.section508.gov/

  2. Beal, C.R., Rosenblum, L.P.: Use of an accessible iPad app and supplemental graphics to build mathematics skills: feasibility study results. J. Vis. Impairment Blindness (Online) 109(5), 383 (2015)

    Article  Google Scholar 

  3. Booth, J.M., Gelb, J.: Optimizing OCR accuracy on older documents: a study of scan mode, file enhancement, and software products (2006)

    Google Scholar 

  4. Braun, V., Clarke, V., Hayfield, N., Terry, G.: Thematic analysis. In: Liamputtong, P. (ed.) Handbook of Research Methods in Health Social Sciences, pp. 843–860. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-5251-4_103

  5. Center, S.H.: Introduction to the SAS graphics accelerator. https://documentation.sas.com/doc/en/gracclug/1.0/p04o83muel10yen12ptmogjpapez.htm (2021)

  6. Chundury, P., Patnaik, B., Reyazuddin, Y., Tang, C., Lazar, J., Elmqvist, N.: Towards understanding sensory substitution for accessible visualization: an interview study. IEEE Trans. Visual Comput. Graphics 28(1), 1084–1094 (2022). https://doi.org/10.1109/TVCG.2021.3114829

    Article  Google Scholar 

  7. Crisan, A.: The importance of data visualization in combating a pandemic. Am. J. Public Health 112(6), 893–895 (2022)

    Google Scholar 

  8. Elavsky, F., Bennett, C., Moritz, D.: How accessible is my visualization? evaluating visualization accessibility with chartability. Eurograph. Conf. Visualiz. (EuroVis) 2022 41(3), 14522 (2022)

    Google Scholar 

  9. Engel, C., Weber, G.: Improve the accessibility of tactile charts. In: Bernhaupt, R., Dalvi, G., Joshi, A., K. Balkrishan, D., O’Neill, J., Winckler, M. (eds.) Human-Computer Interaction - INTERACT 2017, vol. 10513, pp. 187–195. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-67744-6_12

  10. Friendly, M.: A brief history of data visualization. In: Handbook of Data Visualization, pp. 15–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-33037-0_2

  11. Gleason, C., et al.: Disability and the Covid-19 pandemic: using twitter to understand accessibility during rapid societal transition. In: The 22nd International ACM SIGACCESS Conference on Computers and Accessibility, pp. 1–14. ACM, Virtual Event Greece (2020). https://doi.org/10.1145/3373625.3417023

  12. Godfrey, A.J.R., Murrell, P., Sorge, V.: An accessible interaction model for data visualisation in statistics. In: Miesenberger, K., Kouroupetroglou, G. (eds.) Computers Helping People with Special Needs, vol. 10896, pp. 590–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94277-3_92

  13. Granquist, C., Sun, S.Y., Montezuma, S.R., Tran, T.M., Gage, R., Legge, G.E.: Evaluation and comparison of artificial intelligence vision aids: Orcam MyEye 1 and seeing AI. J. Vis. Impairment Blindness 115(4), 277–285 (2021)

    Article  Google Scholar 

  14. He, L., Wan, Z., Findlater, L., Froehlich, J.E.: Tactile: a preliminary toolchain for creating accessible graphics with 3D-printed overlays and auditory annotations. In: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 397–398. ACM, Baltimore Maryland USA (2017). https://doi.org/10.1145/3132525.3134818

  15. Heer, J., Bostock, M., Ogievetsky, V.: A tour through the visualization zoo. Commun. ACM 53(6), 59–67 (2010). https://doi.org/10.1145/1743546.1743567

  16. Jung, C., Mehta, S., Kulkarni, A., Zhao, Y., Kim, Y.S.: Communicating visualizations without visuals: investigation of visualization alternative text for people with visual impairments. IEEE Trans. Visual Comput. Graphics 28(1), 1095–1105 (2022). https://doi.org/10.1109/TVCG.2021.3114846

    Article  Google Scholar 

  17. Kim, N.W., Joyner, S.C., Riegelhuth, A., Kim, Y.: Accessible visualization: design space, opportunities, and challenges. Comput. Graph. Forum 40(3), 173–188 (2021). https://doi.org/10.1111/cgf.14298

    Article  Google Scholar 

  18. Latham, K.: Benefits of low vision aids to reading accessibility. Vision. Res. 153, 47–52 (2018). https://doi.org/10.1016/j.visres.2018.09.009

    Article  Google Scholar 

  19. Lazar, J., Dudley-Sponaugle, A., Greenidge, K.D.: Improving web accessibility: a study of webmaster perceptions. Comput. Hum. Behav. 20(2), 269–288 (2004). https://doi.org/10.1016/j.chb.2003.10.018

    Article  Google Scholar 

  20. Lee, S., Kim, S.H., Hung, Y.H., Lam, H., Kang, Y.A., Yi, J.S.: How do people make sense of unfamiliar visualizations?: a grounded model of novice’s information visualization sensemaking. IEEE Trans. Visual Comput. Graphics 22(1), 499–508 (2016). https://doi.org/10.1109/TVCG.2015.2467195

    Article  Google Scholar 

  21. Lloyd, P.B., Rodgers, P., Roberts, M.J.: Metro map colour-coding: effect on usability in route tracing. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871, pp. 411–428. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91376-6_38

    Chapter  Google Scholar 

  22. Paneels, S., Roberts, J.C.: Review of designs for haptic data visualization. IEEE Trans. Haptics 3(2), 119–137 (2010). https://doi.org/10.1109/TOH.2009.44

    Article  Google Scholar 

  23. Segel, E., Heer, J.: Narrative visualization: telling stories with data. IEEE Trans. Visual Comput. Graphics 16(6), 1139–1148 (2010). https://doi.org/10.1109/TVCG.2010.179

    Article  Google Scholar 

  24. Sharif, A., Chintalapati, S.S., Wobbrock, J.O., Reinecke, K.: Understanding screen-reader users’ experiences with online data visualizations. In: The 23rd International ACM SIGACCESS Conference on Computers and Accessibility, pp. 1–16. ACM, Virtual Event USA (2021). https://doi.org/10.1145/3441852.3471202

  25. Torres, M.J.R., Barwaldt, R.: Approaches for diagrams accessibility for blind people: a systematic review. In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–7. IEEE, Covington, KY, USA (2019). https://doi.org/10.1109/FIE43999.2019.9028522

  26. Valencia, S., Kirabo, L.: Twitter, Covid-19, and disability: what worked and what didn’t. XRDS 28(2), 20–23 (2022). https://doi.org/10.1145/3495255

  27. Yu, W., Kangas, K., Brewster, S.: Web-based haptic applications for blind people to create virtual graphs. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings, pp. 318–325. IEEE Comput. Soc, Los Angeles, CA, USA (2003). https://doi.org/10.1109/HAPTIC.2003.1191301

  28. Walker, K.: Modern day technology: not accessible to all, but necessary to navigate this society. Syracuse J. Sci. Tech. L. 35, 98 (2018)

    Google Scholar 

  29. Ware, C.: Information visualization: perception for design. MA, third edn, Interactive technologies, Morgan Kaufmann, Waltham (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan L. Peiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keilers, C., Tigwell, G.W., Peiris, R.L. (2023). Data Visualization Accessibility for Blind and Low Vision Audiences. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. HCII 2023. Lecture Notes in Computer Science, vol 14020. Springer, Cham. https://doi.org/10.1007/978-3-031-35681-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35681-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35680-3

  • Online ISBN: 978-3-031-35681-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics