Skip to main content

Evaluating Interface Layouts for Conditionally Automated Vehicle Messages

  • Conference paper
  • First Online:
Design, User Experience, and Usability (HCII 2023)

Abstract

Appropriate interface design is essential for drivers’ understanding of automated driving systems states, especially for systems that present complex information such as conditionally automated vehicles. To explore adequate interface design solutions, this study aimed to assess the effects of two different interface layouts (side-by-side symbols and overlapping symbols) on drivers’ comprehension of five system messages. To this end, we conducted an online comprehension testing which was answered by licensed drivers. We observed no significant differences in the effects of the layout on participants’ comprehension of the messages. However, qualitative data showed that respondents may not completely understand the functioning of conditionally automated vehicles, since drivers could comprehend failure or take over request messages but struggled to recognize the “unavailable” and “available” states. Our main contribution is a discussion on observed interface design issues that may be explored in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alliance Automobile Manufactures.: Statement of principles, criteria and verification procedures on driver interactions with advanced in-vehicle information and communication systems (2006). http://www.umich.edu/~driving/publications/PGCRCChapter24DRAFT.pdf%5Cn%5Cn

  2. Beller, J., Heesen, M., Vollrath, M.: Improving the driver-automation interaction: an approach using automation uncertainty. Hum. Fact. 55(6) (2013). https://doi.org/10.1177/0018720813482327

  3. Boelhouwer, A., van Dijk, J., Martens, M.H.: Turmoil behind the automated wheel. In: Krömker, H. (ed.) HCII 2019. LNCS, vol. 11596, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22666-4_1

    Chapter  Google Scholar 

  4. Campbell, J.L., et al.: Human factors design principles for level 2 and level 3 automated driving concepts (Report No. DOT HS 812 555). Highway Traffic Safety Administration, National Department of Transportation, (August) (2018)

    Google Scholar 

  5. Campbell, et al.: Human factors design guidance for driver-vehicle interfaces (Report No. DOT HS 812 360). Washington, D.C (2016)

    Google Scholar 

  6. Campbell, J.L., Hoffmeister, D.H., Kiefer, R.J., Selke, D.J., Green, P., Richman, J.B.: Comprehension testing of active safety symbols. In: SAE Technical Papers, (March 2004) (2004). https://doi.org/10.4271/2004-01-0450

  7. Campbell, J.L., Richman, J.B., Carney, C., Lee, J.D.: In-vehicle display icons and other information elements. Transp. I , 238 (2004). https://doi.org/10.1037/e664642007-001

  8. Carsten, O., Martens, M.H.: How can humans understand their automated cars? HMI principles, problems and solutions. Cogn. Technol. Work 21(1), 3–20 (2018). https://doi.org/10.1007/s10111-018-0484-0

    Article  Google Scholar 

  9. Commission of the European Communities. Commission Recommendation of 26 May 2008 on safe and efficient in-vehicle information and communication systems: update of the European Statement of Principles on human-machine interface. Official J. Eur. Union (2008). http://data.europa.eu/eli/reco/2008/653/oj

  10. De Souza, C. S., Prates, R. O., Carey, T.: Missing and declining affordances: are these appropriate concepts? J. Brazilian Comput. Soc. 7(1) (2000). https://doi.org/10.1590/s0104-65002000000200004

  11. Dixon, L.: Autonowashing: the greenwashing of vehicle automation. Transp. Res. Interdisc. Perspect. 5, 100113 (2020). https://doi.org/10.1016/j.trip.2020.100113

    Article  Google Scholar 

  12. Dziennus, M., Kelsch, J., Schieben, A.: Ambient light based interaction concept for an integrative driver assistance system – a driving simulator study. In: Proceeding of the Human Factors and Ergonomics Society Europe Chapter 2015 Annual Conferences, pp. 171–182 (2016). http://elib.dlr.de/99076/

  13. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Fact.: J. Hum. Fact. Ergon. Soc. 37(1), 32–64 (1995). https://doi.org/10.1518/00187209577904954

    Article  Google Scholar 

  14. Endsley, M.R., Kiris, E.O.: The out-of-the-loop performance problem and level of control in automation. Hum. Fact.: J. Hum. Fact. Ergon. Soc. 37(2), 381–394 (1995). https://doi.org/10.1518/001872095779064555

    Article  Google Scholar 

  15. Forster, Y., Naujoks, F., Neukum, A.: Your turn or my turn? Design of a human-machine interface for conditional automation. In: Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 253–260. New York, NY, USA: Association for Computing Machinery (2016). https://doi.org/10.1145/3003715.3005463

  16. Gibson, J.J.: The ecological approach to visual perception. In:The Ecological Approach to Visual Perception. Psychology Press (1979)

    Google Scholar 

  17. Google.inc.: Waymo (2021). Retrieved November 9, 2021, from https://waymo.com/

  18. Green, P., Levison, W., Paelke, G., Serafin, C.: Suggested Human Factors Design Guidelines for Driver Information Systems. Technical Report FHWA-RD-94–087. (Vol. 1993) (1994)

    Google Scholar 

  19. Hoober, S., Berkman, E.: Designing Mobile Interfaces. O’Reilly Media (2011)

    Google Scholar 

  20. International Organization for Standardization. Road vehicles — Human performance and state in the context of automated driving, p. 24 (2020)

    Google Scholar 

  21. International Organization for Standardization. ISO 9186–1: Graphical symbols — Test methods — Part 1: Method for testing comprehensibility p. 26 (2014)

    Google Scholar 

  22. JAMA: Guideline for in-vehicle display systems - version 3.0. In: Jama (vol. 1). Tokyo (2004). http://www.jama-english.jp/release/release/2005/In-vehicle_Display_GuidelineVer3.pdf

  23. Körber, M., Prasch, L., Bengler, K.: Why do i have to drive now? Post HOC explanations of takeover requests. Hum. Factors 60(3), 305–323 (2018). https://doi.org/10.1177/0018720817747730

    Article  Google Scholar 

  24. Lidwell, W., Holden, K., Butler, J.: Universal Principles of Design: 125 ways to enhance usability, influence perception, increase appeal, make beter design decisions, and teach through design. In: Universal Principles of Design: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make Beter Design Decisions, and Teach Through Design (2010)

    Google Scholar 

  25. Marsh, S.: User research: a practical guide to designing better products and services. Kogan Page, London (2018)

    Google Scholar 

  26. National Highway Traffic Safety Administration. Visual-manual NHTSA driver distraction guidelines for in-vehicle electronic devices. In: Docket No. NHTSA-2010–0053 (2013)

    Google Scholar 

  27. National Highway Traffic Safety Administration. Federal automated vehicles policy: accelerating the next revolution in roadway safety. In: U.S. Department of Transportation. Washington, D.C (2016). 12507-091216-v9

    Google Scholar 

  28. Naujoks, F., Forster, Y., Wiedemann, K., Neukum, A.: A human-machine interface for cooperative highly automated driving. Adv. Intell. Syst. Comput. 484, 585–595 (2017). https://doi.org/10.1007/978-3-319-41682-3_4

    Article  Google Scholar 

  29. Naujoks, F., Wiedemann, K., Schömig, N., Hergeth, S., Keinath, A.: Towards guidelines and verification methods for automated vehicle HMIs. Transps. Res. F: Traffic Psychol. Behav. 60, 121–136 (2019). https://doi.org/10.1016/j.trf.2018.10.012

    Article  Google Scholar 

  30. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R., (Eds.), Usability Inspection Methods. New York: John Wiley & Sons (1994)

    Google Scholar 

  31. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2013)

    Google Scholar 

  32. Parasuraman, R., Riley, V.: Humans and automssssation: use, misuse, disuse, abuse. Hum. Fact. 39(2) (1997). https://doi.org/10.1518/001872097778543886

  33. Parasuraman, R., Sheridan, T. B., Wickens, C. D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybernet. Part A: Syst. Hum. 30(3) (2000). https://doi.org/10.1109/3468.844354

  34. Pauzié, A., Ferhat, L., Tattegrain, H.: Innovative human machine interaction for automatised car: analysis of drivers needs for recommended design. In: Proceedings of the 26th ITS World Congress. Singapore: ITS Singapore (2019)

    Google Scholar 

  35. Perrier, M.J.R., Louw, T., Gonçalves, R.C., Carsten, O.: Applying participatory design to symbols for SAE level 2 automated driving systems. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings, 238–242. New York, NY, USA: ACM (2019). https://doi.org/10.1145/3349263.3351512

  36. Perrier, M.J.R., Louw, T.L., Carsten, O.: User-centred design evaluation of symbols for adaptive cruise control (ACC) and lane-keeping assistance (LKA). Cogn. Technol. Work (2021). https://doi.org/10.1007/s10111-021-00673-0]

    Article  Google Scholar 

  37. Quaresma, M., Motta, I.: Co-Creation workshop for interface design - designing innovative HMI for automated vehicles. Revista ErgodesignHCI, 7(Especial), 24–35 (2019). https://doi.org/10.22570/ergodesignhci.v7iEspecial.1305

  38. Reason, J.: Human Error. Cambridge University Press (1990). https://doi.org/10.1017/CBO9781139062367

    Article  Google Scholar 

  39. Richardson, N.T., Lehmer, C., Lienkamp, M., Michel, B.: Conceptual design and evaluation of a human machine interface for highly automated truck driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), 2018-June(Iv), 2072–2077. IEEE (2018). https://doi.org/10.1109/IVS.2018.8500520

  40. Richardson, J., Revell, K., Kim, J., Stanton, N. A.: Signs symbols & displays in automated vehicles: a focus group study. Adv. Intell. Syst. Comput. 1131 AISC, 980–985 (2020). https://doi.org/10.1007/978-3-030-39512-4_149

  41. Richardson, J., Revell, K.M.A., Kim, J., Stanton, N.A.: The iconography of vehicle automation – a focus group study. In: Designing Interaction and Interfaces for Automated Vehicles, pp. 211–227. First edition. Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. CRC Press (2021). https://doi.org/10.1201/9781003050841-14

  42. Society of Automobile Engineers: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles J3016. In: SAE International, vol. J3016. Warrendale (2021). https://doi.org/10.4271/J3016_202104

  43. Stevens, A., Quimby, A., Board, A., Kersloot, T., Burns, P.: Design guidelines for safety of in-vehicle information systems. Wokingham (2002). https://trl.co.uk/sites/default/files/PA3721-01.pdf

  44. Tesla: Tesla Model S. Retrieved January 4, 2021 (2021). https://www.tesla.com/models?redirect=no

  45. Xu, W.: From automation to autonomy and autonomous vehicles. Interactions 28(1), 48–53 (2021). https://doi.org/10.1145/3434580

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors would also like to thank Rafael Cirino Gonçalves for his contribution in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Quaresma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quaresma, M., Motta, I., Martins, G., Gavinho, C. (2023). Evaluating Interface Layouts for Conditionally Automated Vehicle Messages. In: Marcus, A., Rosenzweig, E., Soares, M.M. (eds) Design, User Experience, and Usability. HCII 2023. Lecture Notes in Computer Science, vol 14032. Springer, Cham. https://doi.org/10.1007/978-3-031-35702-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35702-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35701-5

  • Online ISBN: 978-3-031-35702-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics