Skip to main content

Porous Ceramics for the Design of Domestic Ecologies

  • Conference paper
  • First Online:
Design, User Experience, and Usability (HCII 2023)

Abstract

This study expands the knowledge of design for human well-being by exploring hygroscopic and microbial characteristics and deficiencies in domestic environments through ecological, interdisciplinary, and educative design lenses. This paper reports the literature review on quantitative and qualitative data from different fields to contribute to a multidisciplinary study. It generates a new understanding of ceramic materials and their use for sustainable and healthier household environments through the design of systems that control humidity, temperature, and microbial conditions.

The study assumes that the air quality in a domestic setting, along with the use of powered devices, needs the design of healthier and sustainable systems that provoke a change in behaviors and awareness, above all about the dependency on massive employment of energy.

The significance of this investigation is to produce interdisciplinary knowledge. Rather than having an exhaustive review of one specific aspect and field, we want to connect results in Materials Science and Engineering, Environmental Science and Building, and Design and Architecture to highlight opportunities and directions for design. It is a preparatory study for an applied research project. The goal is to provide new directions for designing porous ceramic systems to enhance the indoor quality of life under sustainability based on the environmental, economic, and social pillars. We map and analyze the domestic environment according to ecological considerations as guidelines to inform design, which contributes to human physical and emotional well-being. This result will involve education on new human behaviors, belonging, and connectedness with nature.

The key issues addressed are drying, cooling, and microbial properties for the design of domestic ecologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidin, E.Z.: Development of porous ceramics as wall tiles with humidity controlling and antimicrobial characteristics from modified diatomaceous earth (de): potential to improve indoor air quality. Asia Pacific Environ. Occup. Health J. 4(3), 41–49 (2018)

    Google Scholar 

  • Adams, R.I., Bateman, A.C., Bik, H.M., Meadow, J.F.: Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 1–18 (2015)

    Article  Google Scholar 

  • Ahmad, R., Ha, J.-H., Song, I.-H.: Enhancement of the compressive strength of highly porous Al2O3 foam through crack healing and improvement of the surface condition by dip-coating. Ceram. Int. 40(2), 3679–3685 (2014)

    Article  Google Scholar 

  • Arundel, A.V., Sterling, E.M., Biggin, J.H., Sterling, T.D., Anthony Arundel, by v: This content downloaded from 188.72.126.17 on Wed. (1986)

    Google Scholar 

  • Asyraf, M.R.M., et al.: Product development of natural fibre-composites for various applications: design for sustainability. Polymers 14, 920 (2022)

    Article  Google Scholar 

  • Beckett, R.: Probiotic design. J. Archit. 26, 6–31 (2021). https://doi.org/10.1080/13602365.2021.1880822

    Article  Google Scholar 

  • Brownell, B.: From matter to x-matter: exploring the newfound capacities of information-enhanced materials. Mater Des. 90, 1238–1247 (2014). https://doi.org/10.1016/j.matdes.2015.03.027

    Article  Google Scholar 

  • Chen, N., Tsay, Y., Chiu, W.: Influence of vertical greening design of building opening on indoor cooling and ventilation. Int. J. Green Energy 14(1), 24–32 (2017). https://doi.org/10.1080/15435075.2016.1233497

    Article  Google Scholar 

  • Di, Y.H., Wang, S.C.: The research of indoor thermal comfort under dynamic conditions. Appl. Mech. Mater. 291–294, 1752–1755 (2013). https://doi.org/10.4028/www.scientific.net/AMM.291-294.1752

    Article  Google Scholar 

  • Djamila, H.: Analysis of building materials for indoor thermal performance and thermal comfort. Adv. Mater. Res. 845, 472–476 (2014)

    Article  Google Scholar 

  • Migliore, E.: Porositivity, il design della porosità (2016)

    Google Scholar 

  • Manzini, E.: The Material of Invention: Materials and Design. The MIT Press, New York (1989)

    Google Scholar 

  • Frankel, M., Bekö, G., Timm, M., Gustavsen, S., Hansen, E.W., Madsen, A.M.: Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl. Environ. Microbiol. 78(23), 8289–8297 (2012)

    Article  Google Scholar 

  • Gantzer, C., Henny, J., Schwartzbrod, L.: Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. Int. J. Hyg. Environ. Health 205(4), 325–328 (2002)

    Article  Google Scholar 

  • Gaziulusoy, I., ErdoÄŸan Öztekin, E.: Design for sustainability transitions: origins, attitudes and future directions. Sustainability 11(13), 3601 (2019)

    Article  Google Scholar 

  • Gantzer, C., et al.: Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. Int. J. Hyg. Environ. Health 205(4), 325–328 (2002)

    Article  Google Scholar 

  • Ibrahim, E., Shao, L., Riffat, S.B.: Performance of porous ceramic evaporators for building cooling application. Energy Build. 35(9), 941–949 (2003)

    Article  Google Scholar 

  • Jeon, Y.-S., Chun, J., Kim, B.-S.: Identification of household bacterial community and analysis of species shared with human microbiome. Curr. Microbiol. 67, 557–563 (2013)

    Article  Google Scholar 

  • Jing, S., Li, B., Tan, M., Liu, H.: Impact of relative humidity on thermal comfort in a warm environment. Indoor Built Environ. 22, 598–607 (2013). https://doi.org/10.1177/1420326X12447614

    Article  Google Scholar 

  • Jin-Xing, S., Bin, C., Pei-Sheng, L.: Preparation of light weight porous ceramics and sound absorption performance research. J. Inorganic Mater. 31, 860 (2016). https://doi.org/10.15541/jim20150654

  • Jackson, K.N., Smith, J.A.: A new method for the deposition of metallic silver on porous ceramic water filters. J. Nanotechnol. 2018, 1–9 (2018). https://doi.org/10.1155/2018/2573015

    Article  Google Scholar 

  • Karana, E., Hekkert, P., Kandachar, P.: Material considerations in product design: a survey on crucial material aspects used by product designers. Mater Des. 29, 1081–1089 (2008). https://doi.org/10.1016/j.matdes.2007.06.002

    Article  Google Scholar 

  • Karana, E., Hekkert, P., Kandachar, P.: A tool for meaning driven materials selection. Mater Des. 31, 2932–2941 (2010). https://doi.org/10.1016/j.matdes.2009.12.021

    Article  Google Scholar 

  • Chris, L.: Materials for Design (2013)

    Google Scholar 

  • Li Jiajia, X.L., Zhang, F., et al.: Preparation and application of porous ceramics. In: 18th National Refractories Youth Academic Conference (2022)

    Google Scholar 

  • Lin, K.L., Lee, T.C., Chang, J.C., Lan, J.Y.: Water absorption and retention of porous ceramics cosintered from waste diatomite and catalyst. Environ. Prog. Sustainable Energy 32(3), 640–648 (2013)

    Article  Google Scholar 

  • Liu, Z., Ma, S., Cao, G., Meng, C., He, B.-J.: Distribution characteristics, growth, reproduction and transmission modes and control strategies for microbial contamination in HVAC systems: a literature review. Energy Build. 177, 77–95 (2018)

    Article  Google Scholar 

  • Lenau, T.A., Keshwani, S., Chakrabarti, A., Ahmed-Kristensen, S.: Biocards and level of abstraction. In: 20th International Conference on Engineering Design (ICED 2015) Design Society. Milan, Italy (2015)

    Google Scholar 

  • Luo Chenlu, C.W., Zhao, X., Liu, Q., Han, B.: Research on moisture absorption performance of commonly used interior materials. China Residential Facilities 224(01), 108–109 (2022)

    Google Scholar 

  • Maine, E., Probert, D., Ashby, M.: Investing in new materials: a tool for technology managers. Technovation 25, 15–23 (2005). https://doi.org/10.1016/S0166-4972(03)00070-1

    Article  Google Scholar 

  • Manzini, E.: Design culture and dialogic design. Des. Issues 32, 52–59 (2016). https://doi.org/10.1162/DESI_a_00364

    Article  Google Scholar 

  • Mao, Z., Zhang, H., Li, Y., Wang, X., Wei, Q., Xie, J.: Preparation and characterization of composite scallop shell powder-based and diatomite-based hygroscopic coating materials with metal-organic framework for indoor humidity regulation. J. Build. Eng. 43, 103122 (2021). https://doi.org/10.1016/j.jobe.2021.103122

    Article  Google Scholar 

  • Onozuka, D., Hashizume, M.: The influence of temperature and humidity on the incidence of hand, foot, and mouth disease in Japan. Sci. Total Environ. 410–411, 119–125 (2011). https://doi.org/10.1016/j.scitotenv.2011.09.055

    Article  Google Scholar 

  • Ormondroyd, G.A., Morris, A.F.: Designing with Natural Materials. CRC Press Taylor & Francis Group, New York (2019)

    Google Scholar 

  • Qi, Y., et al.: Large-scale and long-term monitoring of the thermal environments and adaptive behaviors in Chinese urban residential buildings. Build. Environ. 168, 106524 (2020)

    Article  Google Scholar 

  • Rai, S., Singh, D.K., Kumar, A.: Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J. Basic Microbiol. 61, 267–292 (2021). https://doi.org/10.1002/jobm.202000575

    Article  Google Scholar 

  • Ramos, T., Stephens, B.: Tools to improve built environment data collection for indoor microbial ecology investigations. Build Environ. 81, 243–257 (2014). https://doi.org/10.1016/j.buildenv.2014.07.004

    Article  Google Scholar 

  • Rognoli, V., Bianchini, M., Maffei, S., Karana, E.: DIY materials. Mater Des. 86, 692–702 (2015). https://doi.org/10.1016/j.matdes.2015.07.020

    Article  Google Scholar 

  • Tariku, F., Simpson, Y.: Seasonal indoor humidity levels of apartment suites in a mild coastal climate. J. Archit. Eng. 21 (2015). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000173

  • Tham, S., Thompson, R., Landeg, O., Murray, K.A., Waite, T.: Indoor temperature and health: a global systematic review. Public Health 179, 9–17 (2020). https://doi.org/10.1016/j.puhe.2019.09.005

    Article  Google Scholar 

  • Turchenko, A., Davydova, T., Spivak, I.: Prospects for the creation of smart homes using energy-saving wall ceramic materials. In: E3S Web of Conferences, vol. 164, p. 02029. EDP Sciences, Les Ulis, France (2020)

    Google Scholar 

  • Vu, D.-H., Wang, K.-S., Bac, B.H.: Humidity control porous ceramics prepared from waste and porous materials. Mater. Lett. 65(6), 940–943 (2011)

    Article  Google Scholar 

  • Van Houten, F., et al.: Bio-based design methodologies for products, processes, machine tools and production systems. CIRP J. Manuf. Sci. Technol. 32, 46–60 (2021)

    Article  Google Scholar 

  • Wilkes, S., et al.: Design tools for interdisciplinary translation of material experiences. Mater. Des. 90, 1228–1237 (2014). https://doi.org/10.1016/j.matdes.2015.04.013

    Article  Google Scholar 

  • Yu, Y.J., Tan, J.G., Wang, H., Lin, C.C.: The effect of relative humidity on physiological equivalent temperature in hot environment. Adv. Mater. Res. 779–780, 1266–1271 (2013). https://doi.org/10.4028/www.scientific.net/AMR.779-780.1266

    Article  Google Scholar 

  • Yang, G.-B., Cai, X.-H., Qiao, G.-J., Jin, Z.-H.: Fabricating technologies and progress of porous ceramics. Henan Keji Daxue Xuebao (Ziran Kexue Ban)/(J. Henan Univ. Sci. Technol.)(Nat. Sci.)(China) 25(2), 99–103 (2004). https://doi.org/10.3969/j.issn.1672-6871.2004.02.025

  • Zhang, H., Yoshino, H.: Analysis of indoor humidity environment in Chinese residential buildings. Build. Environ. 45, 2132–2140 (2010). https://doi.org/10.1016/j.buildenv.2010.03.011

    Article  Google Scholar 

  • Zhang, M.X., Tang, X.J., Zhu, Y.M.: Application of porous ceramic filtration on ballast water treatment. Adv. Mater. Res. 610–613, 1505–1508 (2012). https://doi.org/10.4028/www.scientific.net/AMR.610-613.1505

    Article  Google Scholar 

  • Zheng, J., Shi, J., Ma, Q., Dai, X., Chen, Z.: Experimental study on humidity control performance of diatomite-based building materials. Appl. Therm. Eng. 114, 450–456 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.203

    Article  Google Scholar 

  • Zhengjian, Q.: Handbook of New Ceramic Materials. Jiangsu Science and Technology Publishing House, Nanjing (1995)

    Google Scholar 

  • Zhu Xiaolong, S.X.: Porous ceramic materials. Chin. Ceram. 36(4), 36–39 (2000)

    Google Scholar 

  • Zocco, M.A., Ainora, M.E., Gasbarrini, G., Gasbarrini, A.: Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. Digestive Liver Dis. 39(8), 707–712 (2007)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Guangdong Dongpeng Holdings Company Limited for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enza Migliore or Zhennan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Migliore, E., Yao, Z., Deng, X. (2023). Porous Ceramics for the Design of Domestic Ecologies. In: Marcus, A., Rosenzweig, E., Soares, M.M. (eds) Design, User Experience, and Usability. HCII 2023. Lecture Notes in Computer Science, vol 14034. Springer, Cham. https://doi.org/10.1007/978-3-031-35705-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35705-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35704-6

  • Online ISBN: 978-3-031-35705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics